본문

서브메뉴

Deep Learning on Local Sites for Protein Structure and Function Analysis.
ข้อมูลเนื้อหา
Deep Learning on Local Sites for Protein Structure and Function Analysis.
자료유형  
 학위논문
Control Number  
0017161515
International Standard Book Number  
9798382235714
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Alexander William Fox Derry.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
261 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Russ Altman.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Understanding how the three-dimensional structure of a protein leads to its function is important for determining disease mechanisms, developing targeted therapeutics, and engineering new proteins with desired functional characteristics. The expansion of protein structure databases due to experimental and computational advances provides an unprecedented opportunity to learn structure-function relationships in a data-driven manner. Deep learning methods that operate on protein structures have shown promise for specific tasks, but their utility for functional analysis has been limited due to inconsistencies in model training and evaluation, lack of labeled protein function data, and an inability to reconcile global predictions with local biochemical mechanisms. In this dissertation, I explore these challenges and propose a framework for protein analysis based on learning on local sites rather than the entire protein structure. First, to establish standards for model development and evaluation, I present work on (1) developing a suite of benchmark datasets, processing tools, and baseline models, and (2) quantifying the effect of differing structure compositions in the training data. I then describe a self-supervised learning method that leverages evolutionary relationships to learn general-purpose representations of local structural sites, and show how these representations enable improved performance on downstream tasks involving classification, search, and annotation of functional sites. By clustering millions of sites, I propose a framework for protein analysis based on conserved structural motifs which enables the discovery of functional relationships across protein classes. Finally, I present a method for explainable function annotation that predicts the overall function of a protein as well as the individual residues which are responsible.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Deep learning methods
Index Term-Uncontrolled  
Functional analysis
Index Term-Uncontrolled  
Protein structure
Index Term-Uncontrolled  
Structure-function relationships
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658211
New Books MORE
최근 3년간 통계입니다.

ค้นหาข้อมูลรายละเอียด

  • จองห้องพัก
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • โฟลเดอร์ของฉัน
วัสดุ
Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
TQ0034529 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

해당 도서를 다른 이용자가 함께 대출한 도서

Related books

Related Popular Books

도서위치