본문

서브메뉴

Quantum Simulation Using Hybrid Metal-Semiconductor Islands- [electronic resource]
Contents Info
Quantum Simulation Using Hybrid Metal-Semiconductor Islands- [electronic resource]
자료유형  
 학위논문
Control Number  
0016931990
International Standard Book Number  
9798379651442
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Pouse, Winston.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(156 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 84-12, Section: B.
General Note  
Advisor: Feldman, Ben;Kastner, Marc A.;Goldhaber-Gordon, David;Bent, Stacey F.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약Advancements in our control and understanding of quantum systems promise dramatic change in technology, potentially affecting fields of computation, sensing, and even power transmission. These grand possibilities are driven by new phenomena that emerge from strong quantum mechanical interactions between electrons in a material. One limitation to realizing these breakthroughs is that much of the exotic behavior present in quantum materials occur in conditions not suitable for practical applications, for example, very low temperatures or high pressures. Understanding why these novel properties emerge may provide insight into overcoming such limitations. One avenue to better our understanding is quantum simulation, in which a highly controllable experimental system is used to directly implement the physics of these quantum materials.In this thesis we build on a new approach to quantum simulation, using hybrid metal-semiconductor island nanostructures. The hybrid structure combines the advantages of both metal and semiconductor nanostructures - sites that behave uniformly and couplings that are highly tunable. Each island can act as a single lattice site, with electrons that may interact with other lattice sites or a surrounding bath of conduction electrons. However, before scaling to lattices where the physics of bulk materials can be replicated, a crucial step is understanding how two such islands interact with each other.To probe the inter-island interaction, we build and study a two-island device, and find that the inter-island interaction arises from a Kondo-like screening of charge states acting as a pseudospin. When each island is also coupled to a single lead via a Kondo interaction, the resulting competition leads to a quantum critical point. We find that this is well described by a double charge Kondo model, and our transport measurements well match numerical renormalization group calculations. In particular, we study how critical behavior is destroyed following a particular universal scaling form when detuning from charge degeneracy, where criticality occurs.
Subject Added Entry-Topical Term  
Islands.
Subject Added Entry-Topical Term  
Phase transitions.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Electrons.
Subject Added Entry-Topical Term  
Quantum dots.
Subject Added Entry-Topical Term  
High school basketball.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Quantum physics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 84-12B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:643218
New Books MORE
최근 3년간 통계입니다.

פרט מידע

  • הזמנה
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • התיקיה שלי
גשמי
Reg No. Call No. מיקום מצב להשאיל מידע
TQ0029124 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

해당 도서를 다른 이용자가 함께 대출한 도서

Related books

Related Popular Books

도서위치