본문

서브메뉴

Release Mechanisms of Amorphous Solid Dispersions- [electronic resource]
내용보기
Release Mechanisms of Amorphous Solid Dispersions- [electronic resource]
자료유형  
 학위논문
Control Number  
0016932901
International Standard Book Number  
9798379851620
Dewey Decimal Classification Number  
660
Main Entry-Personal Name  
Yang, Ruochen.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2022
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2022
Physical Description  
1 online resource(288 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-01, Section: B.
General Note  
Advisor: Taylor, Lynne S.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2022.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Summary, Etc.  
요약As the pharmaceutical industry moves towards molecular obesity with the use of high throughput screening for identification of promising candidates, the low aqueous solubilities of new chemical entities pose significant challenges to achieving adequate oral absorption and bioavailability. Enabling formulations are often needed to address this issue. Amorphous solid dispersion (ASD), where an amorphous drug and a polymer are molecularly mixed, has gained popularity as a dissolution/solubility enhancing strategy over the years. Upon ASD dissolution, the release rate of drug is much higher than that of the neat amorphous form of the drug. More importantly, the apparent concentration of drug in the solution can exceed its amorphous solubility through the formation of a drug-rich colloidal phase in the solution, also called nanodroplets. The presence of nanodroplets has been shown to be beneficial for oral absorption and bioavailability and their formation during release is therefore desirable. However, such release profiles are only achieved at relatively low drug loadings (DLs) and release tends to drop with increasing DL. For ASDs based on polyvinylpyrrolidone/vinyl acetate (PVPVA), drug release drops drastically once the DL exceeds a certain value, called limit of congruency (LoC). The low DL at which the ASD demonstrates good release also presents additional challenges since it can create a pill burden for patients due to the large amount of polymer needed in the formulation. Therefore, to achieve optimal drug product performance, it is crucial to understand the mechanisms of drug release. Therefore, this thesis focuses on understanding the factors affecting, and the mechanisms of ASD drug release, as well as enhancing drug release through addition of surfactants.The glass transition temperature of a drug and its interaction with the polymer were identified as important factors affecting the drug release and LoC. Another phase transition occurring during ASD hydration/dissolution, amorphous-amorphous phase separation (AAPS), was shown to affect drug release from ASD significantly. During dissolution, water-induced AAPS occurs, and the initially miscible ASD separates into two phases, an insoluble drug-rich phase and a soluble water/polymer-rich phase. The formation of a continuous drug-rich phase at the ASD-solution interface was shown to be detrimental to drug release as it could act as barrier that blocked any further drug release. When the drug-rich phase formed adopted a discrete morphology or when phase separation occurred in the solution outside of the dissolving ASD matrix, good release could be achieved. Surfactants could interrupt the formation of the continuous drug-rich both kinetically and thermodynamically, improving drug release as a result. Other mechanisms of release enhancement by surfactants included increased polymer release rate, increased water ingress and plasticization. The findings in this thesis will provide insight into ASD release mechanisms, and facilitate rational excipient selection when designing ASD formulations.
Subject Added Entry-Topical Term  
Surfactants.
Subject Added Entry-Topical Term  
Polymers.
Subject Added Entry-Topical Term  
Humidity.
Subject Added Entry-Topical Term  
Spectrum analysis.
Subject Added Entry-Topical Term  
Nuclear magnetic resonance--NMR.
Subject Added Entry-Topical Term  
Microscopy.
Subject Added Entry-Topical Term  
Crystallization.
Subject Added Entry-Topical Term  
Molecular weight.
Subject Added Entry-Topical Term  
Statistical significance.
Subject Added Entry-Topical Term  
Hydration.
Subject Added Entry-Topical Term  
Drug dosages.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Atmospheric sciences.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Polymer chemistry.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 85-01B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:641989
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0027844 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치