본문

서브메뉴

Generalization of System Identification Objective Functions Through Stochastic Hidden Markov Models for Regularization, Smoothness, and Uncertainty Quantification- [electronic resource]
내용보기
Generalization of System Identification Objective Functions Through Stochastic Hidden Markov Models for Regularization, Smoothness, and Uncertainty Quantification- [electronic resource]
자료유형  
 학위논문
Control Number  
0016935605
International Standard Book Number  
9798380372992
Dewey Decimal Classification Number  
310
Main Entry-Personal Name  
Galioto, Nicholas.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2023
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2023
Physical Description  
1 online resource(141 p.)
General Note  
Source: Dissertations Abstracts International, Volume: 85-03, Section: B.
General Note  
Advisor: Gorodetsky, Alex Arkady.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2023.
Restrictions on Access Note  
This item must not be sold to any third party vendors.
Restrictions on Access Note  
This item must not be added to any third party search indexes.
Summary, Etc.  
요약With the growing availability of computational resources, the interest in learning models of dynamical systems has grown exponentially over the years across many diverse disciplines. As a result of this growth, objective functions for model estimation have been rapidly developed independently across fields such as fluids, control, and machine learning. Theoretical justifications for these objectives, however, have lagged behind. In this dissertation, we provide a unifying theoretical framework for some of the most popular of these objectives, specifically dynamic mode decomposition (DMD), single rollout Markov parameter estimation, sparse identification of nonlinear dynamics (SINDy), and multiple shooting.In this framework, we model a general dynamical system using a hidden Markov model and derive a marginal likelihood that can be used for estimation. The key difference between this and most existing likelihood estimators is that rather than simply modeling the estimation error in the output of the system, we additionally model the error in the dynamics through the inclusion of a process noise term. Not only does this process noise term provide the flexibility needed to generalize many existing objectives, but it also provides three significant advantages in the marginal likelihood. The first is that it generates an explicit regularization term that arises directly from the model formulation without the need for adding heuristic priors onto the parameters. Furthermore, this regularization term is over the output, rather than the parameters, of the model and is therefore applicable to any arbitrary parameterization of the dynamics. Secondly, the process noise term provides smoothing of the marginal likelihood optimization surface without having to discount the information in the data through tempering methods or abbreviated simulation lengths. Lastly, estimation of the process noise term can give a quantification of the uncertainty of the estimated model without necessarily requiring expensive Markov chain Monte Carlo (MCMC) sampling.To evaluate this proposed marginal likelihood, we present an efficient recursive algorithm for linear-Gaussian models and an approximation to this algorithm for all remaining models. We discuss how simplifications to the approximate algorithm can be made when the noise is additive Gaussian and derive simplifications for when it is arbitrary additive/multiplicative noise. Next, we provide theoretical results proving that the considered objectives are special cases of a posterior that uses the proposed marginal likelihood. These results uncover the sets of assumptions needed to transform the negative log posterior into each of the objective functions that we consider. We then present numerical experiments that compare the (approximate) marginal likelihood to each of the considered objectives on a variety of systems. These experiments include linear, chaotic, partial differential equation, limit cycle, and Hamiltonian systems. Additionally, we include a novel comparison of Hamiltonian estimation using symplectic and non-symplectic dynamics propagators. This comparison uses uncertainty quantification both in the form of MCMC sampling and process noise covariance estimation to show that embedding the symplectic propagator into the objective delivers more precise estimates than embedding the objective with the non-symplectic propagator. Overall, the results of this dissertation demonstrate that the marginal likelihood is able to produce more accurate estimates on problems with high amounts of uncertainty in the forms of measurement noise, measurement sparsity, and model expressiveness than comparable objective functions.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Aerospace engineering.
Index Term-Uncontrolled  
System identification
Index Term-Uncontrolled  
Bayesian inference
Index Term-Uncontrolled  
Dynamic mode decomposition
Index Term-Uncontrolled  
Dynamical systems
Index Term-Uncontrolled  
Numerical experiments
Added Entry-Corporate Name  
University of Michigan Aerospace Engineering
Host Item Entry  
Dissertations Abstracts International. 85-03B.
Host Item Entry  
Dissertation Abstract International
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:640591
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0026511 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치