본문

서브메뉴

Uncovering Strategies for Personalized Treatment Selection Using Large Language Models.
Uncovering Strategies for Personalized Treatment Selection Using Large Language Models.

상세정보

자료유형  
 학위논문
Control Number  
0017161367
International Standard Book Number  
9798382813813
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Miao, Brenda.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, San Francisco., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
168 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: A.
General Note  
Includes supplementary digital materials.
General Note  
Advisor: Butte, Atul.
Dissertation Note  
Thesis (Ph.D.)--University of California, San Francisco, 2024.
Summary, Etc.  
요약Healthcare data has never been so accessible to patients and physicians, from smartphones and other remote monitoring devices to improved access for patients to their own Electronic Medical Record (EMR) history and clinical notes. Despite the ubiquity of healthcare data collection and distribution, there remains a significant gap in understanding the impacts of this data on clinical care. Insights from these digital health tools and downstream clinical decision-making processes are often only captured in medical notes, which are complex, sparse, unstructured, and difficult to model even with traditional deep learning methods. Only recently have large language models (LLMs) emerged that are capable of zero- or few-shot clinical language, without the need for large, manually annotated datasets. In this dissertation, I develop methods to adapt LLMs to healthcare tasks, particularly for identifying points of actionable insights for both digital and pharmaceutical therapeutics. These approaches demonstrate the ways in which digital health products can impact clinical care, as well as provide methods to identify reasons for medication class switching that consider the complexities of patient care beyond lab values and diagnosis codes. While careful, rigorous research is needed to ensure that these approaches are effective in facilitating patient care improvements and to reduce any potential for harm, the rapid pace of language model development provides an extraordinary opportunity to transform clinical practice. These new methods allow us to take an unprecedented look at the conversations, decisions, and medical expertise captured in billions of clinical notes and other clinical text, and to learn from this shared knowledge to accelerate medical research, improve clinical guidelines, and personalize patient care. 
Subject Added Entry-Topical Term  
Bioinformatics.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Language.
Index Term-Uncontrolled  
Clinical text processing
Index Term-Uncontrolled  
Large language models
Index Term-Uncontrolled  
Treatment strategy optimization
Index Term-Uncontrolled  
Electronic Medical Record history
Index Term-Uncontrolled  
Deep learning methods
Added Entry-Corporate Name  
University of California, San Francisco Biological and Medical Informatics
Host Item Entry  
Dissertations Abstracts International. 85-12A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658655

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161367
■00520250211151347
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382813813
■035    ▼a(MiAaPQ)AAI31242717
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aMiao,  Brenda.▼0(orcid)0000-0002-3393-9837
■24510▼aUncovering  Strategies  for  Personalized  Treatment  Selection  Using  Large  Language  Models.
■260    ▼a[S.l.]▼bUniversity  of  California,  San  Francisco.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a168  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  A.
■500    ▼aIncludes  supplementary  digital  materials.
■500    ▼aAdvisor:  Butte,  Atul.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  San  Francisco,  2024.
■520    ▼aHealthcare  data  has  never  been  so  accessible  to  patients  and  physicians,  from  smartphones  and  other  remote  monitoring  devices  to  improved  access  for  patients  to  their  own  Electronic  Medical  Record  (EMR)  history  and  clinical  notes.  Despite  the  ubiquity  of  healthcare  data  collection  and  distribution,  there  remains  a  significant  gap  in  understanding  the  impacts  of  this  data  on  clinical  care.  Insights  from  these  digital  health  tools  and  downstream  clinical  decision-making  processes  are  often  only  captured  in  medical  notes,  which  are  complex,  sparse,  unstructured,  and  difficult  to  model  even  with  traditional  deep  learning  methods.  Only  recently  have  large  language  models  (LLMs)  emerged  that  are  capable  of  zero-  or  few-shot  clinical  language,  without  the  need  for  large,  manually  annotated  datasets.  In  this  dissertation,  I  develop  methods  to  adapt  LLMs  to  healthcare  tasks,  particularly  for  identifying  points  of  actionable  insights  for  both  digital  and  pharmaceutical  therapeutics.  These  approaches  demonstrate  the  ways  in  which  digital  health  products  can  impact  clinical  care,  as  well  as  provide  methods  to  identify  reasons  for  medication  class  switching  that  consider  the  complexities  of  patient  care  beyond  lab  values  and  diagnosis  codes.  While  careful,  rigorous  research  is  needed  to  ensure  that  these  approaches  are  effective  in  facilitating  patient  care  improvements  and  to  reduce  any  potential  for  harm,  the  rapid  pace  of  language  model  development  provides  an  extraordinary  opportunity  to  transform  clinical  practice.  These  new  methods  allow  us  to  take  an  unprecedented  look  at  the  conversations,  decisions,  and  medical  expertise  captured  in  billions  of  clinical  notes  and  other  clinical  text,  and  to  learn  from  this  shared  knowledge  to  accelerate  medical  research,  improve  clinical  guidelines,  and  personalize  patient  care. 
■590    ▼aSchool  code:  0034.
■650  4▼aBioinformatics.
■650  4▼aComputer  science.
■650  4▼aLanguage.
■653    ▼aClinical  text  processing
■653    ▼aLarge  language  models
■653    ▼aTreatment  strategy  optimization
■653    ▼aElectronic  Medical  Record  history  
■653    ▼aDeep  learning  methods
■690    ▼a0715
■690    ▼a0984
■690    ▼a0679
■690    ▼a0769
■71020▼aUniversity  of  California,  San  Francisco▼bBiological  and  Medical  Informatics.
■7730  ▼tDissertations  Abstracts  International▼g85-12A.
■790    ▼a0034
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161367▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0034973 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치