본문

서브메뉴

New Theoretical Techniques for Analyzing and Mitigating Password Cracking Attacks.
New Theoretical Techniques for Analyzing and Mitigating Password Cracking Attacks.

상세정보

자료유형  
 학위논문
Control Number  
0017162750
International Standard Book Number  
9798342106252
Dewey Decimal Classification Number  
519.77
Main Entry-Personal Name  
Liu, Peiyuan.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
255 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Blocki, Jeremiah.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약Brute force guessing attacks continue to pose a significant threat to user passwords. To protect user passwords against brute force attacks, many organizations impose restrictions aimed at forcing users to select stronger passwords. Organizations may also adopt stronger hashing functions in an effort to deter offline brute force guessing attacks. However, these defenses induce trade-offs between security, usability, and the resources an organization is willing to investigate to protect passwords. In order to make informed password policy decisions, it is crucial to understand the distribution over user passwords and how policy updates will impact this password distribution and/or the strategy of a brute force attacker.This first part of this thesis focuses on developing rigorous statistical tools to analyze user password distributions and the behavior of brute force password attackers. In particular, we first develop several rigorous statistical techniques to upper and lower bound the guessing curve of an optimal attacker who knows the user password distribution and can order guesses accordingly. We apply these techniques to analyze eight password datasets and two PIN datasets. Our empirical analysis demonstrates that our statistical techniques can be used to evaluate password composition policies, compare the strength of different password distributions, quantify the impact of applying PIN blocklists, and help tune hash cost parameters. A real world attacker may not have perfect knowledge of the password distribution. Prior work introduced an efficient Monte Carlo technique to estimate the guessing number of a password under a particular password cracking model, i.e., the number of guesses an attacker would check before this particular password. This tool can also be used to generate password guessing curves, but there is no absolute guarantee that the guessing number and the resulting guessing curves are accurate. Thus, we propose a tool called Confident Monte Carlo that uses rigorous statistical techniques to upper and lower bound the guessing number of a particular password as well as the attacker's entire guessing curve. Our empirical analysis also demonstrate that this tool can be used to help inform password policy decisions, e.g., identifying and warning users with weaker passwords, or tuning hash cost parameters.The second part of this thesis focuses on developing stronger password hashing algorithms to protect user passwords against offline brute force attacks. In particular, we establish that the memory hard function Scrypt, which has been widely deployed as password hash function, is maximally bandwidth hard. We also present new techniques to construct and analyze depth robust graph with improved concrete parameters. Depth robust graph play an essential rule in the design and analysis of memory hard functions.
Subject Added Entry-Topical Term  
Integer programming.
Subject Added Entry-Topical Term  
Confidence.
Subject Added Entry-Topical Term  
Graphs.
Subject Added Entry-Topical Term  
Passwords.
Subject Added Entry-Topical Term  
Cybersecurity.
Subject Added Entry-Topical Term  
Computer science.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658650

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162750
■00520250211152050
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342106252
■035    ▼a(MiAaPQ)AAI31345323
■035    ▼a(MiAaPQ)Purdue25678026
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519.77
■1001  ▼aLiu,  Peiyuan.
■24510▼aNew  Theoretical  Techniques  for  Analyzing  and  Mitigating  Password  Cracking  Attacks.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a255  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Blocki,  Jeremiah.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aBrute  force  guessing  attacks  continue  to  pose  a  significant  threat  to  user  passwords.  To  protect  user  passwords  against  brute  force  attacks,  many  organizations  impose  restrictions  aimed  at  forcing  users  to  select  stronger  passwords.  Organizations  may  also  adopt  stronger  hashing  functions  in  an  effort  to  deter  offline  brute  force  guessing  attacks.  However,  these  defenses  induce  trade-offs  between  security,  usability,  and  the  resources  an  organization  is  willing  to  investigate  to  protect  passwords.  In  order  to  make  informed  password  policy  decisions,  it  is  crucial  to  understand  the  distribution  over  user  passwords  and  how  policy  updates  will  impact  this  password  distribution  and/or  the  strategy  of  a  brute  force  attacker.This  first  part  of  this  thesis  focuses  on  developing  rigorous  statistical  tools  to  analyze  user  password  distributions  and  the  behavior  of  brute  force  password  attackers.  In  particular,  we  first  develop  several  rigorous  statistical  techniques  to  upper  and  lower  bound  the  guessing  curve  of  an  optimal  attacker  who  knows  the  user  password  distribution  and  can  order  guesses  accordingly.  We  apply  these  techniques  to  analyze  eight  password  datasets  and  two  PIN  datasets.  Our  empirical  analysis  demonstrates  that  our  statistical  techniques  can  be  used  to  evaluate  password  composition  policies,  compare  the  strength  of  different  password  distributions,  quantify  the  impact  of  applying  PIN  blocklists,  and  help  tune  hash  cost  parameters.  A  real  world  attacker  may  not  have  perfect  knowledge  of  the  password  distribution.  Prior  work  introduced  an  efficient  Monte  Carlo  technique  to  estimate  the  guessing  number  of  a  password  under  a  particular  password  cracking  model,  i.e.,  the  number  of  guesses  an  attacker  would  check  before  this  particular  password.  This  tool  can  also  be  used  to  generate  password  guessing  curves,  but  there  is  no  absolute  guarantee  that  the  guessing  number  and  the  resulting  guessing  curves  are  accurate.  Thus,  we  propose  a  tool  called  Confident  Monte  Carlo  that  uses  rigorous  statistical  techniques  to  upper  and  lower  bound  the  guessing  number  of  a  particular  password  as  well  as  the  attacker's  entire  guessing  curve.  Our  empirical  analysis  also  demonstrate  that  this  tool  can  be  used  to  help  inform  password  policy  decisions,  e.g.,  identifying  and  warning  users  with  weaker  passwords,  or  tuning  hash  cost  parameters.The  second  part  of  this  thesis  focuses  on  developing  stronger  password  hashing  algorithms  to  protect  user  passwords  against  offline  brute  force  attacks.  In  particular,  we  establish  that  the  memory  hard  function  Scrypt,  which  has  been  widely  deployed  as  password  hash  function,  is  maximally  bandwidth  hard.  We  also  present  new  techniques  to  construct  and  analyze  depth  robust  graph  with  improved  concrete  parameters.  Depth  robust  graph  play  an  essential  rule  in  the  design  and  analysis  of  memory  hard  functions.
■590    ▼aSchool  code:  0183.
■650  4▼aInteger  programming.
■650  4▼aConfidence.
■650  4▼aGraphs.
■650  4▼aPasswords.
■650  4▼aCybersecurity.
■650  4▼aComputer  science.
■690    ▼a0984
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162750▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0034968 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치