본문

서브메뉴

Experimental and Computational Study on Flow Measurement and Mixing Characterization in High-Temperature Gas-Cooled Reactors.
Experimental and Computational Study on Flow Measurement and Mixing Characterization in High-Temperature Gas-Cooled Reactors.

상세정보

자료유형  
 학위논문
Control Number  
0017162822
International Standard Book Number  
9798382739489
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Mao, Jiaxin.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
199 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Manera, Annalisa;Petrov, Victor.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약The High-Temperature Gas-cooled Reactor (HTGR), one of the six candidates for the advanced nuclear reactors in the Generation IV International Forum (GIF), has received great attention due to its enhanced safety, high thermodynamic efficiency, and suitability as energy source for high-temperature industrial processes such as hydrogen production. However, despite extensive advances in the development of this design, there remain thermal-hydraulic challenges that need to be addressed before commercialization.One challenge is the measurement of the primary coolant flow. Currently, the primary helium coolant flow is not directly measured but rather inferred from either the energy balance of the turbine compressor or the helium circulator rotational speed. Though functional, both methods introduce large uncertainties; therefore, HGTR operation would benefit greatly from the development of a suitable gas flow meter. Such development is challenging due to the high flow rates (the gas velocities are in the range of 10 − 15 m/s at the nominal operating conditions), high operating temperatures ( 700oC), and high neutron flux and gamma fields in the reactor core. No commercially available flow meters are suitable for flow rate measurements in such a harsh environment.Another challenge is related to the accurate prediction of the plant behavior during an extended Loss of Force Circulation (LOFC) accident, one of the Design Basis Accidents (DBAs) that have to be considered when licensing the design. During LOFC scenarios, the flow in the reactor pressure vessel reverts its direction, moving upwards. The extent to which the hot coolant jets exiting the core mix in the upper plenum will determine the heat removal rate, the occurrence of local hot spots, and the potential for thermal striping. In severe cases or after repeated cycles, the striping can thermally fatigue the material of the upper plenum internals, leading to component failure. While 3D Computational Fluid Dynamic (CFD) models can be useful for an accurate prediction of thermal mixing and the occurrence of hot spots in the HTGR upper plenum, a shortage of high-resolution experimental data has hampered the validation of such models.This thesis addresses the challenges mentioned above by 1): designing a novel acoustic flow meter and 2): conducting high-resolution experiments for mixing in large enclosures to establish a high-resolution database specifically designed for the validation of high-fidelity CFD models. The novel acoustic flow meter relies upon the principle of vortex-induced acoustics. Within the present dissertation, a combination of experiments and simulations was conducted to support the development and optimization of the flow meter design and to successfully demonstrate its proof of principle. To investigate the flow conditions relevant to mixing in the upper plenum and establish a database for CFD model validation, two experimental facilities were designed and constructed at the University of Michigan. Special care was dedicated to guaranteeing well-characterized boundary conditions, so that the data could be used for the validation of CFD codes. First, the Michigan Multi-jet Gas-mixture Dome (MiGaDome) facility, a 1/12th scaled down from the upper plenum geometry of the Modular HTGRs design, was designed and built within the workscope of the present dissertation to investigate multi-jet interactions in a domed enclosure using optical measurements such as Laser Doppler Velocimetry (LDV) and Particle Image Velocity (PIV). Second, the High-Resolution Jet (HiRJet) facility was used to investigate the propagation of stratified fronts in a body of fluid. Wire-Mesh Sensor (WMS) units were used for high-resolution measurements of the time-dependent density field and characterization of the stratified front. High-resolution experimental data measured at these two facilities were used to shed light on the flow mixing in large enclosures with or without the presence of stratified density fronts. Extensive code validation has been conducted for RANS based turbulence models to assess and improve the performance of the computational models. The work in this thesis is expected to benefit the advancement of HTGR designs by providing practical solutions and through enhanced computational tools.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Nuclear engineering.
Subject Added Entry-Topical Term  
Fluid mechanics.
Subject Added Entry-Topical Term  
Computational physics.
Index Term-Uncontrolled  
Thermal fluids
Index Term-Uncontrolled  
High-Temperature Gas-cooled Reactor
Index Term-Uncontrolled  
Computational Fluid Dynamic
Index Term-Uncontrolled  
Flow instrumentation
Index Term-Uncontrolled  
Mixing in large enclosures
Added Entry-Corporate Name  
University of Michigan Nuclear Engineering & Radiological Sciences
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658637

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162822
■00520250211152059
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382739489
■035    ▼a(MiAaPQ)AAI31349002
■035    ▼a(MiAaPQ)umichrackham005443
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aMao,  Jiaxin.
■24510▼aExperimental  and  Computational  Study  on  Flow  Measurement  and  Mixing  Characterization  in  High-Temperature  Gas-Cooled  Reactors.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a199  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Manera,  Annalisa;Petrov,  Victor.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aThe  High-Temperature  Gas-cooled  Reactor  (HTGR),  one  of  the  six  candidates  for  the  advanced  nuclear  reactors  in  the  Generation  IV  International  Forum  (GIF),  has  received  great  attention  due  to  its  enhanced  safety,  high  thermodynamic  efficiency,  and  suitability  as  energy  source  for  high-temperature  industrial  processes  such  as  hydrogen  production.  However,  despite  extensive  advances  in  the  development  of  this  design,  there  remain  thermal-hydraulic  challenges  that  need  to  be  addressed  before  commercialization.One  challenge  is  the  measurement  of  the  primary  coolant  flow.  Currently,  the  primary  helium  coolant  flow  is  not  directly  measured  but  rather  inferred  from  either  the  energy  balance  of  the  turbine  compressor  or  the  helium  circulator  rotational  speed.  Though  functional,  both  methods  introduce  large  uncertainties;  therefore,  HGTR  operation  would  benefit  greatly  from  the  development  of  a  suitable  gas  flow  meter.  Such  development  is  challenging  due  to  the  high  flow  rates  (the  gas  velocities  are  in  the  range  of  10  −  15  m/s  at  the  nominal  operating  conditions),  high  operating  temperatures  (  700oC),  and  high  neutron  flux  and  gamma  fields  in  the  reactor  core.  No  commercially  available  flow  meters  are  suitable  for  flow  rate  measurements  in  such  a  harsh  environment.Another  challenge  is  related  to  the  accurate  prediction  of  the  plant  behavior  during  an  extended  Loss  of  Force  Circulation  (LOFC)  accident,  one  of  the  Design  Basis  Accidents  (DBAs)  that  have  to  be  considered  when  licensing  the  design.  During  LOFC  scenarios,  the  flow  in  the  reactor  pressure  vessel  reverts  its  direction,  moving  upwards.  The  extent  to  which  the  hot  coolant  jets  exiting  the  core  mix  in  the  upper  plenum  will  determine  the  heat  removal  rate,  the  occurrence  of  local  hot  spots,  and  the  potential  for  thermal  striping.  In  severe  cases  or  after  repeated  cycles,  the  striping  can  thermally  fatigue  the  material  of  the  upper  plenum  internals,  leading  to  component  failure.  While  3D  Computational  Fluid  Dynamic  (CFD)  models  can  be  useful  for  an  accurate  prediction  of  thermal  mixing  and  the  occurrence  of  hot  spots  in  the  HTGR  upper  plenum,  a  shortage  of  high-resolution  experimental  data  has  hampered  the  validation  of  such  models.This  thesis  addresses  the  challenges  mentioned  above  by  1):  designing  a  novel  acoustic  flow  meter  and  2):  conducting  high-resolution  experiments  for  mixing  in  large  enclosures  to  establish  a  high-resolution  database  specifically  designed  for  the  validation  of  high-fidelity  CFD  models.  The  novel  acoustic  flow  meter  relies  upon  the  principle  of  vortex-induced  acoustics.  Within  the  present  dissertation,  a  combination  of  experiments  and  simulations  was  conducted  to  support  the  development  and  optimization  of  the  flow  meter  design  and  to  successfully  demonstrate  its  proof  of  principle.  To  investigate  the  flow  conditions  relevant  to  mixing  in  the  upper  plenum  and  establish  a  database  for  CFD  model  validation,  two  experimental  facilities  were  designed  and  constructed  at  the  University  of  Michigan.  Special  care  was  dedicated  to  guaranteeing  well-characterized  boundary  conditions,  so  that  the  data  could  be  used  for  the  validation  of  CFD  codes.  First,  the  Michigan  Multi-jet  Gas-mixture  Dome  (MiGaDome)  facility,  a  1/12th  scaled  down  from  the  upper  plenum  geometry  of  the  Modular  HTGRs  design,  was  designed  and  built  within  the  workscope  of  the  present  dissertation  to  investigate  multi-jet  interactions  in  a  domed  enclosure  using  optical  measurements  such  as  Laser  Doppler  Velocimetry  (LDV)  and  Particle  Image  Velocity  (PIV).  Second,  the  High-Resolution  Jet  (HiRJet)  facility  was  used  to  investigate  the  propagation  of  stratified  fronts  in  a  body  of  fluid.  Wire-Mesh  Sensor  (WMS)  units  were  used  for  high-resolution  measurements  of  the  time-dependent  density  field  and  characterization  of  the  stratified  front.  High-resolution  experimental  data  measured  at  these  two  facilities  were  used  to  shed  light  on  the  flow  mixing  in  large  enclosures  with  or  without  the  presence  of  stratified  density  fronts.  Extensive  code  validation  has  been  conducted  for  RANS  based  turbulence  models  to  assess  and  improve  the  performance  of  the  computational  models.  The  work  in  this  thesis  is  expected  to  benefit  the  advancement  of  HTGR  designs  by  providing  practical  solutions  and  through  enhanced  computational  tools.
■590    ▼aSchool  code:  0127.
■650  4▼aEngineering.
■650  4▼aNuclear  engineering.
■650  4▼aFluid  mechanics.
■650  4▼aComputational  physics.
■653    ▼aThermal  fluids
■653    ▼aHigh-Temperature  Gas-cooled  Reactor
■653    ▼aComputational  Fluid  Dynamic
■653    ▼aFlow  instrumentation
■653    ▼aMixing  in  large  enclosures
■690    ▼a0537
■690    ▼a0552
■690    ▼a0204
■690    ▼a0216
■71020▼aUniversity  of  Michigan▼bNuclear  Engineering  &  Radiological  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162822▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0034945 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치