본문

서브메뉴

Exploring the Mechanics of Golgi-Localized Tul1 Selective Degradation.
Exploring the Mechanics of Golgi-Localized Tul1 Selective Degradation.

상세정보

자료유형  
 학위논문
Control Number  
0017162784
International Standard Book Number  
9798382738499
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Dennison, Devon Danielle.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
157 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Baldridge, Ryan D.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약The eukaryotic proteome is in constant flux, as cellular proteins are continuously synthesized, folded, post-translationally modified, trafficked, and degraded to maintain a healthy proteomic balance. Maintaining this balance is critical to organismal health and disrupted cellular protein homeostasis is omnipresent in human disease. Cellular proteostasis is maintained and/or restored by networked protein quality control systems. Endoplasmic reticulum (ER) quality control surveils nascent secretory and membrane proteins synthesized into the ER lumen before trafficking through the secretory pathway. Organelles that receive ER-synthesized proteins contain additional quality control systems that recognize and respond to proteostatic threats by either rerouting substrates and/or facilitating their degradation.In S. cerevisiae, two examples of post-ER degradative quality control systems are the Tul1 (transmembrane ubiquitin ligase 1) sub-complexes, which cycle through the Golgi apparatus/endosomal compartments or localize to the vacuole (the yeast lysosome). Two features of the Golgi-localized Tul1 system distinguish it from all other degradative quality control systems. First, Tul1 is the only known integral membrane ubiquitin ligase that localizes to the Golgi/endosomes in yeast. Second, Golgi-localized Tul1 complexes facilitate protein substrate degradation through two different pathways: the vacuole and the cytosolic proteasome.Our current understanding of Golgi-localized Tul1 substrate degradation is quite limited. However, the pathway by which a substrate is degraded seems fixed and specific to the recognized protein; proteasomal substrates are not re-routed for degradation in the vacuole and vice versa. We sought to elucidate how Tul1 complexes specify a substrate for the proteasome versus the vacuole, beginning with a dissection of the central component in the complex the Tul1 ubiquitin ligase. In this thesis, we established deep mutational scanning tools and biochemical characterization assays to perform a residue-level structure-function analysis of Tul1. From our efforts, we defined lumenal mutations that impaired Tul1 complex formation and inhibited its function, meaning it was unable to degrade proteasomal and vacuolar substrates.Surprisingly, we identified mutations within the Tul1 RING domain that changed substrate specificity. These mutants were nonfunctional for degradation of proteasomal substrate, but hypomorphic for vacuolar substrate degradation. We did not identify Tul1 single-residue mutants that were singularly functional for only proteasomal or only vacuolar substrate degradation, which led us to conclude that Tul1 is important for selecting substrates for either degradation pathway, but there are likely other factors involved.Based on our results, we propose models for how the Golgi-localized Tul1 system can selectively degrade substrates. Of these, we favor a model in which differing interactions with the ubiquitin conjugating enzyme Ubc4 influences Tul1 to selectively conjugate differing lengths of ubiquitin chains on to proteasomal and vacuolar substrates, which ultimately directs selective substrate engagement with degradation machinery. Further exploration of this, and other proposed models, can be easily achieved by applying or adapting tools that we introduce. In summary, the work presented in this thesis lends further insight into how the Golgi-localized Tul1 protein quality control system contributes to maintaining cellular proteostasis by selectively degrading substrates through proteasomal and vacuolar pathways.  
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Biochemistry.
Subject Added Entry-Topical Term  
Molecular biology.
Subject Added Entry-Topical Term  
Biomechanics.
Index Term-Uncontrolled  
Golgi
Index Term-Uncontrolled  
Ubiquitin-proteasome system
Index Term-Uncontrolled  
RING-type ubiquitin ligase
Index Term-Uncontrolled  
Vacuole
Index Term-Uncontrolled  
Protein quality control
Added Entry-Corporate Name  
University of Michigan Cellular & Molecular Biology
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658635

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162784
■00520250211152054
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382738499
■035    ▼a(MiAaPQ)AAI31348889
■035    ▼a(MiAaPQ)umichrackham005396
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aDennison,  Devon  Danielle.
■24510▼aExploring  the  Mechanics  of  Golgi-Localized  Tul1  Selective  Degradation.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a157  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Baldridge,  Ryan  D.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aThe  eukaryotic  proteome  is  in  constant  flux,  as  cellular  proteins  are  continuously  synthesized,  folded,  post-translationally  modified,  trafficked,  and  degraded  to  maintain  a  healthy  proteomic  balance.  Maintaining  this  balance  is  critical  to  organismal  health  and  disrupted  cellular  protein  homeostasis  is  omnipresent  in  human  disease.  Cellular  proteostasis  is  maintained  and/or  restored  by  networked  protein  quality  control  systems.  Endoplasmic  reticulum  (ER)  quality  control  surveils  nascent  secretory  and  membrane  proteins  synthesized  into  the  ER  lumen  before  trafficking  through  the  secretory  pathway.  Organelles  that  receive  ER-synthesized  proteins  contain  additional  quality  control  systems  that  recognize  and  respond  to  proteostatic  threats  by  either  rerouting  substrates  and/or  facilitating  their  degradation.In  S.  cerevisiae,  two  examples  of  post-ER  degradative  quality  control  systems  are  the  Tul1  (transmembrane  ubiquitin  ligase  1)  sub-complexes,  which  cycle  through  the  Golgi  apparatus/endosomal  compartments  or  localize  to  the  vacuole  (the  yeast  lysosome).  Two  features  of  the  Golgi-localized  Tul1  system  distinguish  it  from  all  other  degradative  quality  control  systems.  First,  Tul1  is  the  only  known  integral  membrane  ubiquitin  ligase  that  localizes  to  the  Golgi/endosomes  in  yeast.  Second,  Golgi-localized  Tul1  complexes  facilitate  protein  substrate  degradation  through  two  different  pathways:  the  vacuole  and  the  cytosolic  proteasome.Our  current  understanding  of  Golgi-localized  Tul1  substrate  degradation  is  quite  limited.  However,  the  pathway  by  which  a  substrate  is  degraded  seems  fixed  and  specific  to  the  recognized  protein;  proteasomal  substrates  are  not  re-routed  for  degradation  in  the  vacuole  and  vice  versa.  We  sought  to  elucidate  how  Tul1  complexes  specify  a  substrate  for  the  proteasome  versus  the  vacuole,  beginning  with  a  dissection  of  the  central  component  in  the  complex  the  Tul1  ubiquitin  ligase.  In  this  thesis,  we  established  deep  mutational  scanning  tools  and  biochemical  characterization  assays  to  perform  a  residue-level  structure-function  analysis  of  Tul1.  From  our  efforts,  we  defined  lumenal  mutations  that  impaired  Tul1  complex  formation  and  inhibited  its  function,  meaning  it  was  unable  to  degrade  proteasomal  and  vacuolar  substrates.Surprisingly,  we  identified  mutations  within  the  Tul1  RING  domain  that  changed  substrate  specificity.  These  mutants  were  nonfunctional  for  degradation  of  proteasomal  substrate,  but  hypomorphic  for  vacuolar  substrate  degradation.  We  did  not  identify  Tul1  single-residue  mutants  that  were  singularly  functional  for  only  proteasomal  or  only  vacuolar  substrate  degradation,  which  led  us  to  conclude  that  Tul1  is  important  for  selecting  substrates  for  either  degradation  pathway,  but  there  are  likely  other  factors  involved.Based  on  our  results,  we  propose  models  for  how  the  Golgi-localized  Tul1  system  can  selectively  degrade  substrates.  Of  these,  we  favor  a  model  in  which  differing  interactions  with  the  ubiquitin  conjugating  enzyme  Ubc4  influences  Tul1  to  selectively  conjugate  differing  lengths  of  ubiquitin  chains  on  to  proteasomal  and  vacuolar  substrates,  which  ultimately  directs  selective  substrate  engagement  with  degradation  machinery.  Further  exploration  of  this,  and  other  proposed  models,  can  be  easily  achieved  by  applying  or  adapting  tools  that  we  introduce.  In  summary,  the  work  presented  in  this  thesis  lends  further  insight  into  how  the  Golgi-localized  Tul1  protein  quality  control  system  contributes  to  maintaining  cellular  proteostasis  by  selectively  degrading  substrates  through  proteasomal  and  vacuolar  pathways.  
■590    ▼aSchool  code:  0127.
■650  4▼aCellular  biology.
■650  4▼aBiochemistry.
■650  4▼aMolecular  biology.
■650  4▼aBiomechanics.
■653    ▼aGolgi
■653    ▼aUbiquitin-proteasome  system
■653    ▼aRING-type  ubiquitin  ligase
■653    ▼aVacuole
■653    ▼aProtein  quality  control
■690    ▼a0379
■690    ▼a0487
■690    ▼a0307
■690    ▼a0648
■71020▼aUniversity  of  Michigan▼bCellular  &  Molecular  Biology.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162784▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0034953 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치