본문

서브메뉴

Exploiting Structure in Safety Control.
Exploiting Structure in Safety Control.

상세정보

자료유형  
 학위논문
Control Number  
0017162785
International Standard Book Number  
9798382738574
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Liu, Zexiang.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
225 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Ozay, Necmiye.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약For safety-critical systems such as autonomous vehicles, power systems, and robotics, it is important to guarantee the systems operate under given safety constraints. Numerous safety control methods have been proposed for this purpose, but many of them are developed for a wide range of systems and do not take full advantage of the structures inherent in dynamics, controllers, and disturbances. This dissertation focuses on enhancing scalability and reducing conservativeness in safety control by leveraging these structures.The first part of the dissertation focuses on developing scalable safety controller synthesis algorithms. We begin with analyzing the convergence properties of the inside-out algorithm, a well-established method for computing inner approximations of the maximal robust controlled invariant set (RCIS). Under mild conditions, we show that the inside-out algorithm converges exponentially to the maximal RCIS for linear systems, filling an important gap in the literature. Following the analysis of the inside-out algorithm, we develop efficient methods for computing implicit RCISs for discrete-time controllable systems. By augmenting the original system with a periodic structure, our implicit RCISs are constructed in closed form, making the proposed methods more scalable than competing approaches. Leveraging the convergence analysis for the inside-out algorithm, we further prove that the proposed implicit RCIS converges exponentially to a well-defined maximal set with a tuning parameter. Finally, we investigate the safety control problem for input-delayed systems, which are very common in the real world and possess a special structure in the system dynamics. By exploiting this structure, we show that the maximal RCIS for systems with input delay is embedded in the maximal RCIS of an auxiliary system, whose dimension is independent of the delay time. Leveraging this property, we propose an efficient method for computing the maximal RCIS for input-delayed systems, which scales well with the delay time.In the second part of the dissertation, we focus on reducing the conservativeness in safety control, by leveraging structure in disturbance. One such structure is preview on disturbance. To assess the value of preview information in safety control, we introduce a metric called safety regret that quantifies the variation of the maximal RCIS as the preview horizon changes. For discrete-time linear systems, we prove the exponential convergence of the safety regret with the preview horizon and offer numerical algorithms that estimate the convergence rate. Our analysis can provide valuable insights when it comes to selecting sensors or perception algorithms with different prediction horizons. It is worth noting that synthesizing safety controllers for systems with preview is in general a challenging task. In this dissertation, we present efficient methods for computing the maximal RCIS for three classes of systems with preview, for which we can again exploit special structures in system dynamics to improve scalability. Finally, we introduce a novel safety control framework called opportunistic safety control, enabling safe operation beyond the maximal RCIS. This framework identifies worst-case disturbance models for each state and constructs control inputs robust to these models. Such disturbance model and control inputs can be computed from the maximal RCIS of an auxiliary system. We show in both simulation and drone experiments that our approach outperforms the existing safety control framework, especially when the system operates beyond the maximal RCIS with unexpected disturbance. 
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Automotive engineering.
Index Term-Uncontrolled  
Safety control
Index Term-Uncontrolled  
Robust controlled invariant set
Index Term-Uncontrolled  
Numerical methods
Index Term-Uncontrolled  
Input delay systems
Index Term-Uncontrolled  
Scalability
Added Entry-Corporate Name  
University of Michigan Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658634

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162785
■00520250211152054
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382738574
■035    ▼a(MiAaPQ)AAI31348891
■035    ▼a(MiAaPQ)umichrackham005559
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aLiu,  Zexiang.
■24510▼aExploiting  Structure  in  Safety  Control.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a225  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Ozay,  Necmiye.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aFor  safety-critical  systems  such  as  autonomous  vehicles,  power  systems,  and  robotics,  it  is  important  to  guarantee  the  systems  operate  under  given  safety  constraints.  Numerous  safety  control  methods  have  been  proposed  for  this  purpose,  but  many  of  them  are  developed  for  a  wide  range  of  systems  and  do  not  take  full  advantage  of  the  structures  inherent  in  dynamics,  controllers,  and  disturbances.  This  dissertation  focuses  on  enhancing  scalability  and  reducing  conservativeness  in  safety  control  by  leveraging  these  structures.The  first  part  of  the  dissertation  focuses  on  developing  scalable  safety  controller  synthesis  algorithms.  We  begin  with  analyzing  the  convergence  properties  of  the  inside-out  algorithm,  a  well-established  method  for  computing  inner  approximations  of  the  maximal  robust  controlled  invariant  set  (RCIS).  Under  mild  conditions,  we  show  that  the  inside-out  algorithm  converges  exponentially  to  the  maximal  RCIS  for  linear  systems,  filling  an  important  gap  in  the  literature.  Following  the  analysis  of  the  inside-out  algorithm,  we  develop  efficient  methods  for  computing  implicit  RCISs  for  discrete-time  controllable  systems.  By  augmenting  the  original  system  with  a  periodic  structure,  our  implicit  RCISs  are  constructed  in  closed  form,  making  the  proposed  methods  more  scalable  than  competing  approaches.  Leveraging  the  convergence  analysis  for  the  inside-out  algorithm,  we  further  prove  that  the  proposed  implicit  RCIS  converges  exponentially  to  a  well-defined  maximal  set  with  a  tuning  parameter.  Finally,  we  investigate  the  safety  control  problem  for  input-delayed  systems,  which  are  very  common  in  the  real  world  and  possess  a  special  structure  in  the  system  dynamics.  By  exploiting  this  structure,  we  show  that  the  maximal  RCIS  for  systems  with  input  delay  is  embedded  in  the  maximal  RCIS  of  an  auxiliary  system,  whose  dimension  is  independent  of  the  delay  time.  Leveraging  this  property,  we  propose  an  efficient  method  for  computing  the  maximal  RCIS  for  input-delayed  systems,  which  scales  well  with  the  delay  time.In  the  second  part  of  the  dissertation,  we  focus  on  reducing  the  conservativeness  in  safety  control,  by  leveraging  structure  in  disturbance.  One  such  structure  is  preview  on  disturbance.  To  assess  the  value  of  preview  information  in  safety  control,  we  introduce  a  metric  called  safety  regret  that  quantifies  the  variation  of  the  maximal  RCIS  as  the  preview  horizon  changes.  For  discrete-time  linear  systems,  we  prove  the  exponential  convergence  of  the  safety  regret  with  the  preview  horizon  and  offer  numerical  algorithms  that  estimate  the  convergence  rate.  Our  analysis  can  provide  valuable  insights  when  it  comes  to  selecting  sensors  or  perception  algorithms  with  different  prediction  horizons.  It  is  worth  noting  that  synthesizing  safety  controllers  for  systems  with  preview  is  in  general  a  challenging  task.  In  this  dissertation,  we  present  efficient  methods  for  computing  the  maximal  RCIS  for  three  classes  of  systems  with  preview,  for  which  we  can  again  exploit  special  structures  in  system  dynamics  to  improve  scalability.  Finally,  we  introduce  a  novel  safety  control  framework  called  opportunistic  safety  control,  enabling  safe  operation  beyond  the  maximal  RCIS.  This  framework  identifies  worst-case  disturbance  models  for  each  state  and  constructs  control  inputs  robust  to  these  models.  Such  disturbance  model  and  control  inputs  can  be  computed  from  the  maximal  RCIS  of  an  auxiliary  system.  We  show  in  both  simulation  and  drone  experiments  that  our  approach  outperforms  the  existing  safety  control  framework,  especially  when  the  system  operates  beyond  the  maximal  RCIS  with  unexpected  disturbance. 
■590    ▼aSchool  code:  0127.
■650  4▼aEngineering.
■650  4▼aElectrical  engineering.
■650  4▼aMechanical  engineering.
■650  4▼aComputer  engineering.
■650  4▼aAutomotive  engineering.
■653    ▼aSafety  control
■653    ▼aRobust  controlled  invariant  set  
■653    ▼aNumerical  methods
■653    ▼aInput  delay  systems
■653    ▼aScalability  
■690    ▼a0544
■690    ▼a0548
■690    ▼a0537
■690    ▼a0464
■690    ▼a0540
■71020▼aUniversity  of  Michigan▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162785▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0034952 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치