본문

서브메뉴

Dendrite Suppression Strategies in Li-Metal Solid-State Batteries: Mechanisms and Innovations.
Dendrite Suppression Strategies in Li-Metal Solid-State Batteries: Mechanisms and Innovations.

상세정보

자료유형  
 학위논문
Control Number  
0017164141
International Standard Book Number  
9798384448792
Dewey Decimal Classification Number  
620.11
Main Entry-Personal Name  
Diallo, Mouhamad Said Al Hamid.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
120 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Ceder, Gerbrand.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2024.
Summary, Etc.  
요약The development of lithium metal solid-state batteries offers significant potential for next-generation energy storage systems, particularly in terms of energy density and operational safety. However, their commercialization is hindered by challenges such as lithium dendrite formation, which can lead to short circuits and battery failure. This dissertation aims to provide a comprehensive understanding of dendrite growth mechanisms in solid electrolytes and explores various strategies to suppress dendrite propagation. Our research investigates the role of solid-electrolyte pellet density in the performance and failure of solid-state batteries. We find that a 99.5% dense solid electrolyte transitions from a pore-percolating to a non-percolating structure, significantly improving the longevity of the battery by preventing short-circuiting under high current densities. Additionally, we explore the role of the Ag/C buffer layers in anode-free solid-state batteries, using first-principles atomistic and continuum modeling techniques. Our findings reveal that the Ag/C BL promotes uniform lithium deposition and reduces interfacial resistance, which enhances cycling stability and mitigates dendrite formation.Furthermore, we demonstrate that silver nanoparticles play a key role in suppressing dendrite growth and preventing stress-induced solid electrolyte fractures in lithium metal solid-state batteries. Through ex-situ characterization techniques such as Focused-ion beam - scanning electron microscopy and energy dispersive X-ray spectroscopy, we show that Ag nanoparticles migrate alongside Li dendrites, promoting homogeneous growth and reducing localized stress concentrations. This uniform distribution of lithium could potentially enable higher charging rates, further enhancing the performance and safety of lithium metal solid-state batteries. By combining experimental and computational approaches, this work contributes to the broader understanding of dendrite suppression in lithium metal solid-state batteries, providing insights into the optimization of solid electrolyte properties, buffer layer design, and nanoparticle incorporation. The results presented in this dissertation offer promising pathways toward the commercialization of safer, high-performance solid-state batteries.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Physical chemistry.
Index Term-Uncontrolled  
Dendrites
Index Term-Uncontrolled  
Energy storage
Index Term-Uncontrolled  
Solid-state batteries
Index Term-Uncontrolled  
Scanning electron microscopy
Added Entry-Corporate Name  
University of California, Berkeley Materials Science & Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658609

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164141
■00520250211152836
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384448792
■035    ▼a(MiAaPQ)AAI31561642
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.11
■1001  ▼aDiallo,  Mouhamad  Said  Al  Hamid.
■24510▼aDendrite  Suppression  Strategies  in  Li-Metal  Solid-State  Batteries:  Mechanisms  and  Innovations.
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a120  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Ceder,  Gerbrand.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2024.
■520    ▼aThe  development  of  lithium  metal  solid-state  batteries  offers  significant  potential  for  next-generation  energy  storage  systems,  particularly  in  terms  of  energy  density  and  operational  safety.  However,  their  commercialization  is  hindered  by  challenges  such  as  lithium  dendrite  formation,  which  can  lead  to  short  circuits  and  battery  failure.  This  dissertation  aims  to  provide  a  comprehensive  understanding  of  dendrite  growth  mechanisms  in  solid  electrolytes  and  explores  various  strategies  to  suppress  dendrite  propagation.  Our  research  investigates  the  role  of  solid-electrolyte  pellet  density  in  the  performance  and  failure  of  solid-state  batteries.  We  find  that  a  99.5%  dense  solid  electrolyte  transitions  from  a  pore-percolating  to  a  non-percolating  structure,  significantly  improving  the  longevity  of  the  battery  by  preventing  short-circuiting  under  high  current  densities.  Additionally,  we  explore  the  role  of  the  Ag/C  buffer  layers  in  anode-free  solid-state  batteries,  using  first-principles  atomistic  and  continuum  modeling  techniques.  Our  findings  reveal  that  the  Ag/C  BL  promotes  uniform  lithium  deposition  and  reduces  interfacial  resistance,  which  enhances  cycling  stability  and  mitigates  dendrite  formation.Furthermore,  we  demonstrate  that  silver  nanoparticles  play  a  key  role  in  suppressing  dendrite  growth  and  preventing  stress-induced  solid  electrolyte  fractures  in  lithium  metal  solid-state  batteries.  Through  ex-situ  characterization  techniques  such  as  Focused-ion  beam  -  scanning  electron  microscopy  and  energy  dispersive  X-ray  spectroscopy,  we  show  that  Ag  nanoparticles  migrate  alongside  Li  dendrites,  promoting  homogeneous  growth  and  reducing  localized  stress  concentrations.  This  uniform  distribution  of  lithium  could  potentially  enable  higher  charging  rates,  further  enhancing  the  performance  and  safety  of  lithium  metal  solid-state  batteries.  By  combining  experimental  and  computational  approaches,  this  work  contributes  to  the  broader  understanding  of  dendrite  suppression  in  lithium  metal  solid-state  batteries,  providing  insights  into  the  optimization  of  solid  electrolyte  properties,  buffer  layer  design,  and  nanoparticle  incorporation.  The  results  presented  in  this  dissertation  offer  promising  pathways  toward  the  commercialization  of  safer,  high-performance  solid-state  batteries.
■590    ▼aSchool  code:  0028.
■650  4▼aMaterials  science.
■650  4▼aEngineering.
■650  4▼aPhysical  chemistry.
■653    ▼aDendrites
■653    ▼aEnergy  storage
■653    ▼aSolid-state  batteries
■653    ▼aScanning  electron  microscopy
■690    ▼a0794
■690    ▼a0537
■690    ▼a0494
■71020▼aUniversity  of  California,  Berkeley▼bMaterials  Science  &  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164141▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0034930 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치