본문

서브메뉴

Topics in Condensed Matter Theory: Berry Curvature Effects in Transport and Numerical Analytic Continuation.
Topics in Condensed Matter Theory: Berry Curvature Effects in Transport and Numerical Analytic Continuation.

상세정보

자료유형  
 학위논문
Control Number  
0017165045
International Standard Book Number  
9798384463139
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Keyes, Lauren.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Ohio State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
142 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Randeria, Mohit.
Dissertation Note  
Thesis (Ph.D.)--The Ohio State University, 2024.
Summary, Etc.  
요약This thesis is composed of two unrelated pieces of work: the first develops a semiclassical theory of transport in topological magnets, and the second presents a machine learning-based method of numerical analytic continuation.In Part I, we calculate the electric and thermal currents carried by electrons in the presence of general magnetic textures in three-dimensional crystals, including three-dimensional topological spin textures. We show, within a controlled, semiclassical approach that includes all phase space Berry curvatures, that the transverse electric, thermoelectric, and thermal Hall conductivities have two contributions in addition to the usual effect proportional to a magnetic field. These are an anomalous contribution governed by the momentum-space Berry curvature arising from the average magnetization, and a topological contribution determined by the real-space Berry curvature and proportional to the topological charge density, which is non-zero in skyrmion phases. This justifies the phenomenological analysis of transport signals employed in a wide range of materials as the sum of these three parts. We prove that the Wiedemann-Franz and Mott relations hold, even in the presence of topological spin textures, and justifying their use in analyzing the transport signals in these materials. This theory also predicts the existence of the in-plane anomalous and topological Hall effects in three-dimensional, low symmetry materials. We present a symmetry analysis which predicts when the in-plane Hall effect (IPHE) is forbidden, and predict which crystal structures could harbor an IPHE which is larger than the usual out-of-plane Hall effect.In Part II, we present a method of numerical analytic continuation of determinantal Quantum Monte Carlo (DQMC) Green's functions, utilizing an unsupervised neural network (NN). Many have used supervised machine learning methods to attack this problem, but the most interesting applications of DQMC are on systems in which the physical state is totally unknown, so it is advantageous to use an unsupervised NN, which requires no prior knowledge of the system's physical state. This autoencoder-type NN trains on real DQMC data, training the NN to produce spectral functions which reproduce the DQMC data as closely as possible. Regularization is provided by 1) a pretraining step, which trains the NN on general characteristics of spectral functions, and 2) the imposition of limited physical assumptions, such as sum rules. Ultimately, this NN is shown to outperform the standard maximum entropy method on the analytic continuation of noisy data, thus saving computational effort.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Condensed matter physics.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Computational physics.
Index Term-Uncontrolled  
Topological Hall effects
Index Term-Uncontrolled  
Transport theory
Index Term-Uncontrolled  
Semiclassical transport
Index Term-Uncontrolled  
Berry curvature
Index Term-Uncontrolled  
Topological magnets
Added Entry-Corporate Name  
The Ohio State University Physics
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658503

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017165045
■00520250211153117
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384463139
■035    ▼a(MiAaPQ)AAI31693973
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aKeyes,  Lauren.
■24510▼aTopics  in  Condensed  Matter  Theory:  Berry  Curvature  Effects  in  Transport  and  Numerical  Analytic  Continuation.
■260    ▼a[S.l.]▼bThe  Ohio  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a142  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Randeria,  Mohit.
■5021  ▼aThesis  (Ph.D.)--The  Ohio  State  University,  2024.
■520    ▼aThis  thesis  is  composed  of  two  unrelated  pieces  of  work:  the  first  develops  a  semiclassical  theory  of  transport  in  topological  magnets,  and  the  second  presents  a  machine  learning-based  method  of  numerical  analytic  continuation.In  Part  I,  we  calculate  the  electric  and  thermal  currents  carried  by  electrons  in  the  presence  of  general  magnetic  textures  in  three-dimensional  crystals,  including  three-dimensional  topological  spin  textures.  We  show,  within  a  controlled,  semiclassical  approach  that  includes  all  phase  space  Berry  curvatures,  that  the  transverse  electric,  thermoelectric,  and  thermal  Hall  conductivities  have  two  contributions  in  addition  to  the  usual  effect  proportional  to  a  magnetic  field.  These  are  an  anomalous  contribution  governed  by  the  momentum-space  Berry  curvature  arising  from  the  average  magnetization,  and  a  topological  contribution  determined  by  the  real-space  Berry  curvature  and  proportional  to  the  topological  charge  density,  which  is  non-zero  in  skyrmion  phases.  This  justifies  the  phenomenological  analysis  of  transport  signals  employed  in  a  wide  range  of  materials  as  the  sum  of  these  three  parts.  We  prove  that  the  Wiedemann-Franz  and  Mott  relations  hold,  even  in  the  presence  of  topological  spin  textures,  and  justifying  their  use  in  analyzing  the  transport  signals  in  these  materials.  This  theory  also  predicts  the  existence  of  the  in-plane  anomalous  and  topological  Hall  effects  in  three-dimensional,  low  symmetry  materials.  We  present  a  symmetry  analysis  which  predicts  when  the  in-plane  Hall  effect  (IPHE)  is  forbidden,  and  predict  which  crystal  structures  could  harbor  an  IPHE  which  is  larger  than  the  usual  out-of-plane  Hall  effect.In  Part  II,  we  present  a  method  of  numerical  analytic  continuation  of  determinantal  Quantum  Monte  Carlo  (DQMC)  Green's  functions,  utilizing  an  unsupervised  neural  network  (NN).  Many  have  used  supervised  machine  learning  methods  to  attack  this  problem,  but  the  most  interesting  applications  of  DQMC  are  on  systems  in  which  the  physical  state  is  totally  unknown,  so  it  is  advantageous  to  use  an  unsupervised  NN,  which  requires  no  prior  knowledge  of  the  system's  physical  state.  This  autoencoder-type  NN  trains  on  real  DQMC  data,  training  the  NN  to  produce  spectral  functions  which  reproduce  the  DQMC  data  as  closely  as  possible.  Regularization  is  provided  by  1)  a  pretraining  step,  which  trains  the  NN  on  general  characteristics  of  spectral  functions,  and  2)  the  imposition  of  limited  physical  assumptions,  such  as  sum  rules.  Ultimately,  this  NN  is  shown  to  outperform  the  standard  maximum  entropy  method  on  the  analytic  continuation  of  noisy  data,  thus  saving  computational  effort.
■590    ▼aSchool  code:  0168.
■650  4▼aPhysics.
■650  4▼aCondensed  matter  physics.
■650  4▼aComputer  science.
■650  4▼aComputational  physics.
■653    ▼aTopological  Hall  effects
■653    ▼aTransport  theory
■653    ▼aSemiclassical  transport
■653    ▼aBerry  curvature
■653    ▼aTopological  magnets
■690    ▼a0611
■690    ▼a0605
■690    ▼a0984
■690    ▼a0800
■690    ▼a0216
■71020▼aThe  Ohio  State  University▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0168
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17165045▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0034821 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치