본문

서브메뉴

Safe University Instruction During COVID-19: Simulation, Statistics, and Uncertainty Quantification.
Safe University Instruction During COVID-19: Simulation, Statistics, and Uncertainty Quantification.

상세정보

자료유형  
 학위논문
Control Number  
0017161275
International Standard Book Number  
9798382841649
Dewey Decimal Classification Number  
519
Main Entry-Personal Name  
Zhang, Yujia.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
223 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Frazier, Peter.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2024.
Summary, Etc.  
요약The COVID-19 pandemic has inflicted significant losses and disruptions on the society since its emergence in 2020. During this difficult time, colleges and universities faced numerous operational decisions that needed to balance safety, educational quality, and cost. This dissertation focuses on a few projects that partly supported safe in-person instruction at Cornell University during COVID-19 and hold great promise for broader applications.First, we study the risk of returning to pre-pandemic level in-person instruction through mathematical modeling and agent-based simulation. We estimate the risk associated with different policies and recommend that fully masked in-person classrooms would be safe without needing to assign seats or update the rooms for better ventilation. This result supported the university's decision to return to regular in-person instruction in Fall 2021.Second, we conduct survival analysis to evaluate the risk of infection associated with attending classes in person. Using data on surveillance testing, class schedules, and class enrollments in Fall 2021 and Spring 2022, we construct a novel feature to quantify the amount of exposure a student has in the classroom. Using extended Cox regression and logistic regression, we find that attending classes was associated with minimal increase in the risk of infection.Third, we investigate group testing under the presence of correlation among samples. In large-scale screenings, correlation between samples in the same pool is naturally induced through human behavior and the process of sample collection. By realistically modeling network contagion, viral load progression, and the dilution effect in pooled testing, we show that such correlation improves the sensitivity and resource efficiency of population-wide testing. Thus, policy-makers envisioning using group testing for large-scale screening should take correlation into account and intentionally maximize it when possible.Fourth, we present an approach for uncertainty quantification of simulation models with a large number of parameters. Using a linear approximation, we quantify the sensitivity of simulation output to each parameter. Furthermore, we adapt ideas from robust optimization and identify a one-dimensional family of parameter configurations associated with different pessimism levels. This method provides insight into the uncertainty of the compartmental simulation developed by the Cornell COVID-19 modeling team, and can be broadly used for sensitivity analysis and scenario analysis in an interpretable way for various simulation models.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Epidemiology.
Subject Added Entry-Topical Term  
Public health.
Subject Added Entry-Topical Term  
Statistics.
Index Term-Uncontrolled  
COVID-19
Index Term-Uncontrolled  
Group testing
Index Term-Uncontrolled  
Logistic regression
Index Term-Uncontrolled  
Simulation models
Index Term-Uncontrolled  
Operational decisions
Index Term-Uncontrolled  
Uncertainty quantification
Added Entry-Corporate Name  
Cornell University Applied Mathematics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658473

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161275
■00520250211151333
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382841649
■035    ▼a(MiAaPQ)AAI31241498
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519
■1001  ▼aZhang,  Yujia.▼0(orcid)0000-0001-7991-6385
■24510▼aSafe  University  Instruction  During  COVID-19:  Simulation,  Statistics,  and  Uncertainty  Quantification.
■260    ▼a[S.l.]▼bCornell  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a223  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Frazier,  Peter.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2024.
■520    ▼aThe  COVID-19  pandemic  has  inflicted  significant  losses  and  disruptions  on  the  society  since  its  emergence  in  2020.  During  this  difficult  time,  colleges  and  universities  faced  numerous  operational  decisions  that  needed  to  balance  safety,  educational  quality,  and  cost.  This  dissertation  focuses  on  a  few  projects  that  partly  supported  safe  in-person  instruction  at  Cornell  University  during  COVID-19  and  hold  great  promise  for  broader  applications.First,  we  study  the  risk  of  returning  to  pre-pandemic  level  in-person  instruction  through  mathematical  modeling  and  agent-based  simulation.  We  estimate  the  risk  associated  with  different  policies  and  recommend  that  fully  masked  in-person  classrooms  would  be  safe  without  needing  to  assign  seats  or  update  the  rooms  for  better  ventilation.  This  result  supported  the  university's  decision  to  return  to  regular  in-person  instruction  in  Fall  2021.Second,  we  conduct  survival  analysis  to  evaluate  the  risk  of  infection  associated  with  attending  classes  in  person.  Using  data  on  surveillance  testing,  class  schedules,  and  class  enrollments  in  Fall  2021  and  Spring  2022,  we  construct  a  novel  feature  to  quantify  the  amount  of  exposure  a  student  has  in  the  classroom.  Using  extended  Cox  regression  and  logistic  regression,  we  find  that  attending  classes  was  associated  with  minimal  increase  in  the  risk  of  infection.Third,  we  investigate  group  testing  under  the  presence  of  correlation  among  samples.  In  large-scale  screenings,  correlation  between  samples  in  the  same  pool  is  naturally  induced  through  human  behavior  and  the  process  of  sample  collection.  By  realistically  modeling  network  contagion,  viral  load  progression,  and  the  dilution  effect  in  pooled  testing,  we  show  that  such  correlation  improves  the  sensitivity  and  resource  efficiency  of  population-wide  testing.  Thus,  policy-makers  envisioning  using  group  testing  for  large-scale  screening  should  take  correlation  into  account  and  intentionally  maximize  it  when  possible.Fourth,  we  present  an  approach  for  uncertainty  quantification  of  simulation  models  with  a  large  number  of  parameters.  Using  a  linear  approximation,  we  quantify  the  sensitivity  of  simulation  output  to  each  parameter.  Furthermore,  we  adapt  ideas  from  robust  optimization  and  identify  a  one-dimensional  family  of  parameter  configurations  associated  with  different  pessimism  levels.  This  method  provides  insight  into  the  uncertainty  of  the  compartmental  simulation  developed  by  the  Cornell  COVID-19  modeling  team,  and  can  be  broadly  used  for  sensitivity  analysis  and  scenario  analysis  in  an  interpretable  way  for  various  simulation  models.
■590    ▼aSchool  code:  0058.
■650  4▼aApplied  mathematics.
■650  4▼aEpidemiology.
■650  4▼aPublic  health.
■650  4▼aStatistics.
■653    ▼aCOVID-19
■653    ▼aGroup  testing
■653    ▼aLogistic  regression
■653    ▼aSimulation  models
■653    ▼aOperational  decisions
■653    ▼aUncertainty  quantification
■690    ▼a0364
■690    ▼a0796
■690    ▼a0766
■690    ▼a0463
■690    ▼a0573
■71020▼aCornell  University▼bApplied  Mathematics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161275▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0034791 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치