본문

서브메뉴

Safeguarding and Empowering General Purpose Robots Through Abstraction and Constraint Certification.
Safeguarding and Empowering General Purpose Robots Through Abstraction and Constraint Certification.

상세정보

자료유형  
 학위논문
Control Number  
0017163655
International Standard Book Number  
9798383705537
Dewey Decimal Classification Number  
629.8
Main Entry-Personal Name  
Wei, Tianhao.
Publication, Distribution, etc. (Imprint  
[S.l.] : Carnegie Mellon University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
218 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Liu, Changliu.
Dissertation Note  
Thesis (Ph.D.)--Carnegie Mellon University, 2024.
Summary, Etc.  
요약Robots are increasingly deployed across various domains, from industrial automation to domestic assistance. Ensuring that robots operate safely and intelligently is crucial to preventing potential risks such as injury, loss of life, and economic costs. This thesis addresses key challenges in deploying robots in complex real-world environments, including providing formal safety guarantees in uncertain conditions, scaling safety guarantees to realistic high-dimensional systems, allowing the robot to behave intelligently while remaining explainable and trustworthy, and ensuring the robustness of neural network components.This thesis introduces a suite of tools to tackle these challenges. The first tool, Meta-Control, synthesizes heterogeneous robot skills with a hiearchical control approach, which could decompose system-level safety requirements into module-level constraints. These constraints are categorized into control and neural network constraints. For control constraints, the toolset introduces Abstract Safe Control for hierarchical safety guarantees, Robust Safe Control for handling model uncertainty through a control-limits aware robust framework, Neural Network Dynamic Models (NNDM) Safe Control for integrating data-driven models with safety guarantees, and Benchmark of Interactive Safety for benchmarking and unifying different safe control algorithms. For neural network constraints, the toolset introduces ModelVerification.jl toolbox for verifying neural network safety specifications, online verification for online assurance under domain shifts and network update, and the Signal-to-Noise Ratio (SNR) loss method to enhance stability and robustness of neural networks.These tools enable the provision of formal safety guarantees with partially known or unknown dynamic models in uncertain, interactive environments, achieving state-of-the-art control safety and neural network safety. This allows robot arms to perform various tasks efficiently and safely, advancing the development of reliable and trustworthy general-purpose robots.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Explainable AI
Index Term-Uncontrolled  
Neural network verification
Index Term-Uncontrolled  
Robot safety
Index Term-Uncontrolled  
Robust Safe Control
Index Term-Uncontrolled  
Network Dynamic Models
Added Entry-Corporate Name  
Carnegie Mellon University Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658425

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163655
■00520250211152736
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383705537
■035    ▼a(MiAaPQ)AAI31491410
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a629.8
■1001  ▼aWei,  Tianhao.
■24510▼aSafeguarding  and  Empowering  General  Purpose  Robots  Through  Abstraction  and  Constraint  Certification.
■260    ▼a[S.l.]▼bCarnegie  Mellon  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a218  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Liu,  Changliu.
■5021  ▼aThesis  (Ph.D.)--Carnegie  Mellon  University,  2024.
■520    ▼aRobots  are  increasingly  deployed  across  various  domains,  from  industrial  automation  to  domestic  assistance.  Ensuring  that  robots  operate  safely  and  intelligently  is  crucial  to  preventing  potential  risks  such  as  injury,  loss  of  life,  and  economic  costs.  This  thesis  addresses  key  challenges  in  deploying  robots  in  complex  real-world  environments,  including  providing  formal  safety  guarantees  in  uncertain  conditions,  scaling  safety  guarantees  to  realistic  high-dimensional  systems,  allowing  the  robot  to  behave  intelligently  while  remaining  explainable  and  trustworthy,  and  ensuring  the  robustness  of  neural  network  components.This  thesis  introduces  a  suite  of  tools  to  tackle  these  challenges.  The  first  tool,  Meta-Control,  synthesizes  heterogeneous  robot  skills  with  a  hiearchical  control  approach,  which  could  decompose  system-level  safety  requirements  into  module-level  constraints.  These  constraints  are  categorized  into  control  and  neural  network  constraints.  For  control  constraints,  the  toolset  introduces  Abstract  Safe  Control  for  hierarchical  safety  guarantees,  Robust  Safe  Control  for  handling  model  uncertainty  through  a  control-limits  aware  robust  framework,  Neural  Network  Dynamic  Models  (NNDM)  Safe  Control  for  integrating  data-driven  models  with  safety  guarantees,  and  Benchmark  of  Interactive  Safety  for  benchmarking  and  unifying  different  safe  control  algorithms.  For  neural  network  constraints,  the  toolset  introduces  ModelVerification.jl  toolbox  for  verifying  neural  network  safety  specifications,  online  verification  for  online  assurance  under  domain  shifts  and  network  update,  and  the  Signal-to-Noise  Ratio  (SNR)  loss  method  to  enhance  stability  and  robustness  of  neural  networks.These  tools  enable  the  provision  of  formal  safety  guarantees  with  partially  known  or  unknown  dynamic  models  in  uncertain,  interactive  environments,  achieving  state-of-the-art  control  safety  and  neural  network  safety.  This  allows  robot  arms  to  perform  various  tasks  efficiently  and  safely,  advancing  the  development  of  reliable  and  trustworthy  general-purpose  robots.
■590    ▼aSchool  code:  0041.
■650  4▼aRobotics.
■650  4▼aComputer  science.
■650  4▼aInformation  technology.
■653    ▼aExplainable  AI
■653    ▼aNeural  network  verification
■653    ▼aRobot  safety
■653    ▼aRobust  Safe  Control
■653    ▼aNetwork  Dynamic  Models
■690    ▼a0771
■690    ▼a0800
■690    ▼a0984
■690    ▼a0489
■71020▼aCarnegie  Mellon  University▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0041
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163655▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0034746 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치