본문

서브메뉴

Towards Representation Learning for Robust Network Intrusion Detection Systems.
Towards Representation Learning for Robust Network Intrusion Detection Systems.

상세정보

자료유형  
 학위논문
Control Number  
0017163673
International Standard Book Number  
9798384345732
Dewey Decimal Classification Number  
005.8
Main Entry-Personal Name  
Hosler, Ryan.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
120 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Zou, Xukai;Li, Feng.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약The most cost-effective method for cybersecurity defense is prevention. Ideally, before a malicious actor steals information or affects the functionality of a network, a Network Intrusion Detection System (NIDS) will identify and allow for a complete prevention of an attack. For this reason, there are commercial availabilities for rule-based NIDS which will use a packet sniffer to monitor all incoming network traffic for potential intrusions. However, such a NIDS will only work on known intrusions, therefore, researchers have devised sophisticated Deep Learning methods for detecting malicious network activity. By using statistical features from network flows, such as packet count, connection duration, flow bytes per second, etc., a Machine Learning or Deep Learning NIDS may identify an advanced attack that would otherwise bypass a rule-based NIDS.For this research, the presented work will develop novel applications of Deep Learning for NIDS development. Specifically, an image embedding algorithms will be adapted to this domain. Moreover, novel methods for representing network traffic as a graph and applying Deep Graph Representation Learning algorithms for an NIDS will be considered. When compared to the existing state-of-the-art methods within NIDS literature, the methods developed in the research manage to outperform them on numerous Network Traffic Datasets. Furthermore, an NIDS was deployed and successfully configured to a live network environment.Another domain in which this research is applied to is Android Malware Detection. By analyzing network traffic produced by either a benign or malicious Android Application, current research has failed to accurately detect Android Malware. Instead, they rely on features which are extracted from the APK file itself. Therefore, this research presents a NIDS inspired Graph-Based model which demonstrably distinguishes benign and malicious applications through analysis of network traffic alone, which outperforms existing sophisticated malware detection frameworks.
Subject Added Entry-Topical Term  
Cybersecurity.
Subject Added Entry-Topical Term  
Malware.
Subject Added Entry-Topical Term  
Deep learning.
Subject Added Entry-Topical Term  
Success.
Subject Added Entry-Topical Term  
Intrusion detection systems.
Subject Added Entry-Topical Term  
Graph representations.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Information technology.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658419

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163673
■00520250211152739
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384345732
■035    ▼a(MiAaPQ)AAI31496290
■035    ▼a(MiAaPQ)Purdue25607649
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a005.8
■1001  ▼aHosler,  Ryan.
■24510▼aTowards  Representation  Learning  for  Robust  Network  Intrusion  Detection  Systems.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a120  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Zou,  Xukai;Li,  Feng.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aThe  most  cost-effective  method  for  cybersecurity  defense  is  prevention.  Ideally,  before  a  malicious  actor  steals  information  or  affects  the  functionality  of  a  network,  a  Network  Intrusion  Detection  System  (NIDS)  will  identify  and  allow  for  a  complete  prevention  of  an  attack.  For  this  reason,  there  are  commercial  availabilities  for  rule-based  NIDS  which  will  use  a  packet  sniffer  to  monitor  all  incoming  network  traffic  for  potential  intrusions.  However,  such  a  NIDS  will  only  work  on  known  intrusions,  therefore,  researchers  have  devised  sophisticated  Deep  Learning  methods  for  detecting  malicious  network  activity.  By  using  statistical  features  from  network  flows,  such  as  packet  count,  connection  duration,  flow  bytes  per  second,  etc.,  a  Machine  Learning  or  Deep  Learning  NIDS  may  identify  an  advanced  attack  that  would  otherwise  bypass  a  rule-based  NIDS.For  this  research,  the  presented  work  will  develop  novel  applications  of  Deep  Learning  for  NIDS  development.  Specifically,  an  image  embedding  algorithms  will  be  adapted  to  this  domain.  Moreover,  novel  methods  for  representing  network  traffic  as  a  graph  and  applying  Deep  Graph  Representation  Learning  algorithms  for  an  NIDS  will  be  considered.  When  compared  to  the  existing  state-of-the-art  methods  within  NIDS  literature,  the  methods  developed  in  the  research  manage  to  outperform  them  on  numerous  Network  Traffic  Datasets.  Furthermore,  an  NIDS  was  deployed  and  successfully  configured  to  a  live  network  environment.Another  domain  in  which  this  research  is  applied  to  is  Android  Malware  Detection.  By  analyzing  network  traffic  produced  by  either  a  benign  or  malicious  Android  Application,  current  research  has  failed  to  accurately  detect  Android  Malware.  Instead,  they  rely  on  features  which  are  extracted  from  the  APK  file  itself.  Therefore,  this  research  presents  a  NIDS  inspired  Graph-Based  model  which  demonstrably  distinguishes  benign  and  malicious  applications  through  analysis  of  network  traffic  alone,  which  outperforms  existing  sophisticated  malware  detection  frameworks.
■590    ▼aSchool  code:  0183.
■650  4▼aCybersecurity.
■650  4▼aMalware.
■650  4▼aDeep  learning.
■650  4▼aSuccess.
■650  4▼aIntrusion  detection  systems.
■650  4▼aGraph  representations.
■650  4▼aNeural  networks.
■650  4▼aComputer  science.
■650  4▼aInformation  technology.
■690    ▼a0800
■690    ▼a0984
■690    ▼a0489
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163673▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0034740 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치