본문

서브메뉴

Safety-Aware System Optimization for Autonomous Machines.
Safety-Aware System Optimization for Autonomous Machines.

상세정보

자료유형  
 학위논문
Control Number  
0017161302
International Standard Book Number  
9798382783307
Dewey Decimal Classification Number  
629.8
Main Entry-Personal Name  
Hsiao, Yu-Shun.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
131 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Reddi, Vijay Janapa.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2024.
Summary, Etc.  
요약Autonomous machines such as vehicles, drones, and robotic manipulators promise to transform the world by unleashing humans from repetitive, dangerous, and labor-intensive tasks. However, their widespread deployment requires advances in safety, real-time performance, and resilience. This thesis tackles these key challenges through end-to-end system optimization that maintains safety while improving performance and fault tolerance. We optimize the entire Perception-Planning-Control (PPC) computing pipeline that takes in sensor readings and output control commands. First, this thesis develops a model to quantify the perception processing rate requirements for safe autonomous driving in complex scenarios, connecting the varying real-time latency requirements with the operating scenarios. Second, we accelerate the time-consuming 3D mapping in perception. A specialized accelerator is designed that achieves substantially higher throughput and energy efficiency over a CPU, enabling real-time perception for 3D mapping. Third, we accelerate the computationally expensive optimization-based motion planning algorithms with a variable precision search method that reduces memory bandwidth pressure without sacrificing positional and orientational precision. Lastly, we assess autonomous machines' fault tolerance characteristics against real-world noises and errors to generate reliable control commands. We propose a fault characterization framework that evaluates the impact of silent data corruptions (SDCs) on application-level metrics. To mitigate SDCs, we propose lightweight anomaly detection techniques to recover failures in the computing pipeline with insignificant overhead. This dissertation enables the development of safe, real-time, and resilient autonomous machines. The contributions chart a path toward robust deployment of autonomous machines that can transform society.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
Computer science.
Index Term-Uncontrolled  
Autonomous systems
Index Term-Uncontrolled  
Computer architecture
Index Term-Uncontrolled  
Silent data corruptions
Index Term-Uncontrolled  
Real-time performance
Added Entry-Corporate Name  
Harvard University Engineering and Applied Sciences - Computer Science
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658396

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161302
■00520250211151337
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382783307
■035    ▼a(MiAaPQ)AAI31241961
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a629.8
■1001  ▼aHsiao,  Yu-Shun.▼0(orcid)0000-0002-2580-9872
■24510▼aSafety-Aware  System  Optimization  for  Autonomous  Machines.
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a131  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Reddi,  Vijay  Janapa.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2024.
■520    ▼aAutonomous  machines  such  as  vehicles,  drones,  and  robotic  manipulators  promise  to  transform  the  world  by  unleashing  humans  from  repetitive,  dangerous,  and  labor-intensive  tasks.  However,  their  widespread  deployment  requires  advances  in  safety,  real-time  performance,  and  resilience.  This  thesis  tackles  these  key  challenges  through  end-to-end  system  optimization  that  maintains  safety  while  improving  performance  and  fault  tolerance.  We  optimize  the  entire  Perception-Planning-Control  (PPC)  computing  pipeline  that  takes  in  sensor  readings  and  output  control  commands.  First,  this  thesis  develops  a  model  to  quantify  the  perception  processing  rate  requirements  for  safe  autonomous  driving  in  complex  scenarios,  connecting  the  varying  real-time  latency  requirements  with  the  operating  scenarios.  Second,  we  accelerate  the  time-consuming  3D  mapping  in  perception.  A  specialized  accelerator  is  designed  that  achieves  substantially  higher  throughput  and  energy  efficiency  over  a  CPU,  enabling  real-time  perception  for  3D  mapping.  Third,  we  accelerate  the  computationally  expensive  optimization-based  motion  planning  algorithms  with  a  variable  precision  search  method  that  reduces  memory  bandwidth  pressure  without  sacrificing  positional  and  orientational  precision.  Lastly,  we  assess  autonomous  machines'  fault  tolerance  characteristics  against  real-world  noises  and  errors  to  generate  reliable  control  commands.  We  propose  a  fault  characterization  framework  that  evaluates  the  impact  of  silent  data  corruptions  (SDCs)  on  application-level  metrics.  To  mitigate  SDCs,  we  propose  lightweight  anomaly  detection  techniques  to  recover  failures  in  the  computing  pipeline  with  insignificant  overhead.  This  dissertation  enables  the  development  of  safe,  real-time,  and  resilient  autonomous  machines.  The  contributions  chart  a  path  toward  robust  deployment  of  autonomous  machines  that  can  transform  society.
■590    ▼aSchool  code:  0084.
■650  4▼aRobotics.
■650  4▼aComputer  science.
■653    ▼aAutonomous  systems
■653    ▼aComputer  architecture
■653    ▼aSilent  data  corruptions
■653    ▼aReal-time  performance
■690    ▼a0771
■690    ▼a0800
■690    ▼a0984
■71020▼aHarvard  University▼bEngineering  and  Applied  Sciences  -  Computer  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161302▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0034714 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치