본문

서브메뉴

Combinatorics of Vexillary Grothendieck Polynomials.
Combinatorics of Vexillary Grothendieck Polynomials.

상세정보

자료유형  
 학위논문
Control Number  
0017161332
International Standard Book Number  
9798382843681
Dewey Decimal Classification Number  
510
Main Entry-Personal Name  
Hafner, Elena Sarah.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
89 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Meszaros, Karola.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2024.
Summary, Etc.  
요약First introduced by Lascoux and Schutzenberger in 1982, Grothendieck polynomials are a family of polynomials indexed by permutations in Sn. In this thesis, we study the supports of Grothendieck polynomials associated to vexillary (2143-avoiding) permutations. We use bumpless pipe dreams to show several nice properties of the supports of vexillary Grothendieck polynomials, addressing special cases of conjectures of Meszaros, Setiabrata, and St. Dizier. Additionally, through joint work with Meszaros, Setiabrata, and St. Dizier, we showthat the homogenized Grothendieck polynomial associated to any vexillary per-mutation is M-convex. To accomplish this, we introduce bubbling diagrams and show that they compute the supports of vexillary Grothendieck polynomials.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Theoretical mathematics.
Index Term-Uncontrolled  
Grothendieck , Alexander
Index Term-Uncontrolled  
Vexillary Grothendieck polynomials
Index Term-Uncontrolled  
Permutations
Index Term-Uncontrolled  
Polytopes
Index Term-Uncontrolled  
Bumpless pipe dreams
Added Entry-Corporate Name  
Cornell University Mathematics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658387

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161332
■00520250211151341
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382843681
■035    ▼a(MiAaPQ)AAI31242232
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a510
■1001  ▼aHafner,  Elena  Sarah.▼0(orcid)0009-0004-4807-1710
■24510▼aCombinatorics  of  Vexillary  Grothendieck  Polynomials.
■260    ▼a[S.l.]▼bCornell  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a89  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Meszaros,  Karola.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2024.
■520    ▼aFirst  introduced  by  Lascoux  and  Schutzenberger  in  1982,  Grothendieck  polynomials  are  a  family  of  polynomials  indexed  by  permutations  in  Sn.  In  this  thesis,  we  study  the  supports  of  Grothendieck  polynomials  associated  to  vexillary  (2143-avoiding)  permutations.  We  use  bumpless  pipe  dreams  to  show  several  nice  properties  of  the  supports  of  vexillary  Grothendieck  polynomials,  addressing  special  cases  of  conjectures  of  Meszaros,  Setiabrata,  and  St.  Dizier.  Additionally,  through  joint  work  with  Meszaros,  Setiabrata,  and  St.  Dizier,  we  showthat  the  homogenized  Grothendieck  polynomial  associated  to  any  vexillary  per-mutation  is  M-convex.  To  accomplish  this,  we  introduce  bubbling  diagrams  and  show  that  they  compute  the  supports  of  vexillary  Grothendieck  polynomials.
■590    ▼aSchool  code:  0058.
■650  4▼aMathematics.
■650  4▼aTheoretical  mathematics.
■653    ▼aGrothendieck  ,  Alexander
■653    ▼aVexillary  Grothendieck  polynomials
■653    ▼aPermutations
■653    ▼aPolytopes
■653    ▼aBumpless  pipe  dreams
■690    ▼a0405
■690    ▼a0642
■71020▼aCornell  University▼bMathematics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161332▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0034705 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치