본문

서브메뉴

Characterizing and Detecting Password Guessing Attacks.
Characterizing and Detecting Password Guessing Attacks.

상세정보

자료유형  
 학위논문
Control Number  
0017161410
International Standard Book Number  
9798382842486
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Bohuk, Marina Sanusi.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
187 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Ristenpart, Thomas.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2024.
Summary, Etc.  
요약Modern authentication systems still mainly rely on passwords for authentication, but little is known about legitimate and malicious user behavior during the authentication process due to the difficulty of collecting information on such a sensitive field. Because passwords are hard to remember and often reused across websites, they are prone to remote guessing attacks in which an attacker iterates through a guess list of credentials, submitting them against a live login system; but existing defenses do not leverage password-based information because of the challenge of collecting such information in a secure way.We address this challenge first by developing a measurement framework called Gossamer for securely recording password-derived measurements, which we used to collect data on 34 million login requests at two universities. Then, we show how we used the data collected by Gossamer to develop a clustering approach called Arana that detects and groups login requests into attack campaigns. Finally, we explore existing timely attack detection mechanisms and evaluate them on Gossamer data along with three new detection methods based on Directed Anomaly Scoring. We also show that these detection methods are vulnerable to evasion attacks by an adaptive attacker.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Authentication
Index Term-Uncontrolled  
Passwords
Index Term-Uncontrolled  
Privacy
Index Term-Uncontrolled  
Security
Index Term-Uncontrolled  
Arana
Added Entry-Corporate Name  
Cornell University Computer Science
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658306

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161410
■00520250211151352
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382842486
■035    ▼a(MiAaPQ)AAI31243426
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aBohuk,  Marina  Sanusi.▼0(orcid)0000-0003-0242-9575
■24510▼aCharacterizing  and  Detecting  Password  Guessing  Attacks.
■260    ▼a[S.l.]▼bCornell  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a187  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Ristenpart,  Thomas.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2024.
■520    ▼aModern  authentication  systems  still  mainly  rely  on  passwords  for  authentication,  but  little  is  known  about  legitimate  and  malicious  user  behavior  during  the  authentication  process  due  to  the  difficulty  of  collecting  information  on  such  a  sensitive  field.  Because  passwords  are  hard  to  remember  and  often  reused  across  websites,  they  are  prone  to  remote  guessing  attacks  in  which  an  attacker  iterates  through  a  guess  list  of  credentials,  submitting  them  against  a  live  login  system;  but  existing  defenses  do  not  leverage  password-based  information  because  of  the  challenge  of  collecting  such  information  in  a  secure  way.We  address  this  challenge  first  by  developing  a  measurement  framework  called  Gossamer  for  securely  recording  password-derived  measurements,  which  we  used  to  collect  data  on  34  million  login  requests  at  two  universities.  Then,  we  show  how  we  used  the  data  collected  by  Gossamer  to  develop  a  clustering  approach  called  Arana  that  detects  and  groups  login  requests  into  attack  campaigns.  Finally,  we  explore  existing  timely  attack  detection  mechanisms  and  evaluate  them  on  Gossamer  data  along  with  three  new  detection  methods  based  on  Directed  Anomaly  Scoring.  We  also  show  that  these  detection  methods  are  vulnerable  to  evasion  attacks  by  an  adaptive  attacker.
■590    ▼aSchool  code:  0058.
■650  4▼aComputer  science.
■650  4▼aComputer  engineering.
■650  4▼aInformation  technology.
■653    ▼aAuthentication
■653    ▼aPasswords
■653    ▼aPrivacy
■653    ▼aSecurity
■653    ▼aArana  
■690    ▼a0984
■690    ▼a0489
■690    ▼a0464
■71020▼aCornell  University▼bComputer  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161410▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0034624 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치