본문

서브메뉴

New Insights into Aerosol Properties, Perturbations, and Radiative Effects in the Stratosphere and Upper Troposphere.
New Insights into Aerosol Properties, Perturbations, and Radiative Effects in the Stratosphere and Upper Troposphere.

상세정보

자료유형  
 학위논문
Control Number  
0017161434
International Standard Book Number  
9798382775982
Dewey Decimal Classification Number  
551.5
Main Entry-Personal Name  
Li, Yaowei.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
167 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Keutsch, Frank.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2024.
Summary, Etc.  
요약The interactions between atmospheric aerosols and radiation represent one of the largest uncertainties in our scientific understanding of climate change. Aerosols in the stratosphere and upper troposphere (S/UT), above approximately 7 km from the Earth's surface, play a critical role in modulating global radiative balance by scattering and absorbing radiation, and by affecting the lifecycle of ice clouds. Stratospheric aerosols have been suggested to contribute to ~21% of the total aerosol direct radiative forcing since 1850. Furthermore, they affect the protective ozone layer directly by modulating heterogeneous reaction rates of halogen activation and N2O5 hydrolysis and indirectly via more uncertain radiative impacts on temperature and dynamics. This thesis delves into novel insights regarding the microphysical, chemical, and optical properties of S/UT aerosols, which are essential for understanding their radiative and chemical effects. Despite significant advances, important questions remain about these properties, especially in light of intermittent aerosol perturbations from volcanic eruptions and severe wildfire/biomass burning events.A primary focus of this thesis lies in unraveling the diverse chemical composition and morphology of S/UT aerosols and its influence on their optical properties, consequently affecting radiative forcing. Contrary to the traditional assumption that stratospheric aerosols are predominantly composed of sulfate, observations and recent modeling studies indicate that organic matter may constitute a substantial portion (5-60%) of the particle mass in the lower stratosphere. The implications of these organic components are not fully understood but could lead to substantial revisions in our comprehension of the stratosphere's climate influence. This thesis begins by exploring the composition dependence of stratospheric aerosol radiative forcing, particularly examining the sensitivity to the intrinsic optical property (i.e., refractive index) of organics and their mixing states with sulfates. Using long-term balloon-borne aerosol measurement records and radiative transfer calculations, this work revealed that organics may have significant impacts (up to a 100% change) on stratospheric aerosol shortwave radiative forcing during periods of minimal to moderate volcanic activity (Chapter 1). However, data on the refractive index of stratospheric organic aerosols is scarce. To bridge this gap, laboratory measurements of the refractive index of organic aerosols were conducted, alongside the development of a semi-empirical model that predicts the refractive index of organic aerosol from its widely measured oxygen-to-carbon and hydrogen-to-carbon elemental ratios (Chapter 2). These efforts help better constrain the optical properties of organic-containing stratospheric aerosols.The second focus of this thesis involves in situ sampling and measurements of aerosols in the S/UT. During the NASA DCOTSS (ER-2 aircraft) and NOAA SABRE (WB-57 aircraft) missions, I developed and deployed two aircraft instruments to: 1) measure S/UT aerosol concentration and size distribution across a range of 140-2,500 nm in diameter, and 2) collect S/UT aerosol samples for offline chemical composition and morphology analysis (Chapter 3). My work yielded a valuable dataset of aerosol concentration, size distribution, composition, and morphology up to 22 km over North America. This dataset is essential for characterizing the baseline state of S/UT aerosols and discerning the effects of volcanic and wildfire perturbations.Notably, volcanic plumes from La Soufriere eruptions in April 2021 were sampled repeatedly in the stratosphere, enabling detailed analysis of aerosol concentration and size distribution within these volcanic plumes and their spatiotemporal evolutions in the stratosphere. Contrary to the conventional wisdom that volcanic eruptions lead to increased aerosol size-evidenced by the aftermath of massive events like the 1991 Pinatubo eruption-my findings from the 2021 La Soufriere eruption indicate a decrease in aerosol effective diameter within the midlatitude lower stratosphere due to a significant increase in small particles ( 400 nm). This suggests a nuanced impact of relatively smaller yet more frequent eruptions. The radiative and ozone impacts of these volcanic plumes were further examined using the SOCOL-AERv2 aerosol-chemistry-climate model (Chapter 4).Additionally, encounters with wildfire smoke from a pyrocumulonimbus (pyroCb) event were recorded in the UT. These pyroCb smoke aerosols show a distinct large size mode (500-600 nm diameter) and a high concentration of biomass burning organics. The radiative effects of these large smoke aerosols were assessed using radiative transfer calculations. Subsequent offline analysis of the S/UT aerosol samples unveiled the prevalence of organic-containing particles, particularly those originating from biomass burning sources, in the summer stratosphere. These particles were predominantly complex mixtures of inorganic and organic substances, occasionally intermingled with black carbon (Chapter 5).My Ph.D. work integrates fieldwork, laboratory experiments, instrumentation, and computational modeling to delve into the properties, perturbations, and radiative effects of aerosols in the S/UT. This multifaceted approach aids in quantifying the climate and chemical impacts of S/UT aerosols and underscores the imperative to increase our understanding of organic and biomass burning aerosols in this region.
Subject Added Entry-Topical Term  
Atmospheric chemistry.
Subject Added Entry-Topical Term  
Climate change.
Subject Added Entry-Topical Term  
Environmental science.
Subject Added Entry-Topical Term  
Meteorology.
Index Term-Uncontrolled  
Aerosols
Index Term-Uncontrolled  
Airborne measurements
Index Term-Uncontrolled  
Microphysical properties
Index Term-Uncontrolled  
Optical properties
Index Term-Uncontrolled  
Radiative forcing
Index Term-Uncontrolled  
Stratosphere
Index Term-Uncontrolled  
Upper troposphere
Added Entry-Corporate Name  
Harvard University Engineering and Applied Sciences - Engineering Sciences
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658298

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161434
■00520250211151355
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382775982
■035    ▼a(MiAaPQ)AAI31243757
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a551.5
■1001  ▼aLi,  Yaowei.▼0(orcid)0000-0003-0725-6108
■24510▼aNew  Insights  into  Aerosol  Properties,  Perturbations,  and  Radiative  Effects  in  the  Stratosphere  and  Upper  Troposphere.
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a167  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Keutsch,  Frank.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2024.
■520    ▼aThe  interactions  between  atmospheric  aerosols  and  radiation  represent  one  of  the  largest  uncertainties  in  our  scientific  understanding  of  climate  change.  Aerosols  in  the  stratosphere  and  upper  troposphere  (S/UT),  above  approximately  7  km  from  the  Earth's  surface,  play  a  critical  role  in  modulating  global  radiative  balance  by  scattering  and  absorbing  radiation,  and  by  affecting  the  lifecycle  of  ice  clouds.  Stratospheric  aerosols  have  been  suggested  to  contribute  to  ~21%  of  the  total  aerosol  direct  radiative  forcing  since  1850.  Furthermore,  they  affect  the  protective  ozone  layer  directly  by  modulating  heterogeneous  reaction  rates  of  halogen  activation  and  N2O5  hydrolysis  and  indirectly  via  more  uncertain  radiative  impacts  on  temperature  and  dynamics.  This  thesis  delves  into  novel  insights  regarding  the  microphysical,  chemical,  and  optical  properties  of  S/UT  aerosols,  which  are  essential  for  understanding  their  radiative  and  chemical  effects.  Despite  significant  advances,  important  questions  remain  about  these  properties,  especially  in  light  of  intermittent  aerosol  perturbations  from  volcanic  eruptions  and  severe  wildfire/biomass  burning  events.A  primary  focus  of  this  thesis  lies  in  unraveling  the  diverse  chemical  composition  and  morphology  of  S/UT  aerosols  and  its  influence  on  their  optical  properties,  consequently  affecting  radiative  forcing.  Contrary  to  the  traditional  assumption  that  stratospheric  aerosols  are  predominantly  composed  of  sulfate,  observations  and  recent  modeling  studies  indicate  that  organic  matter  may  constitute  a  substantial  portion  (5-60%)  of  the  particle  mass  in  the  lower  stratosphere.  The  implications  of  these  organic  components  are  not  fully  understood  but  could  lead  to  substantial  revisions  in  our  comprehension  of  the  stratosphere's  climate  influence.  This  thesis  begins  by  exploring  the  composition  dependence  of  stratospheric  aerosol  radiative  forcing,  particularly  examining  the  sensitivity  to  the  intrinsic  optical  property  (i.e.,  refractive  index)  of  organics  and  their  mixing  states  with  sulfates.  Using  long-term  balloon-borne  aerosol  measurement  records  and  radiative  transfer  calculations,  this  work  revealed  that  organics  may  have  significant  impacts  (up  to  a  100%  change)  on  stratospheric  aerosol  shortwave  radiative  forcing  during  periods  of  minimal  to  moderate  volcanic  activity  (Chapter  1).  However,  data  on  the  refractive  index  of  stratospheric  organic  aerosols  is  scarce.  To  bridge  this  gap,  laboratory  measurements  of  the  refractive  index  of  organic  aerosols  were  conducted,  alongside  the  development  of  a  semi-empirical  model  that  predicts  the  refractive  index  of  organic  aerosol  from  its  widely  measured  oxygen-to-carbon  and  hydrogen-to-carbon  elemental  ratios  (Chapter  2).  These  efforts  help  better  constrain  the  optical  properties  of  organic-containing  stratospheric  aerosols.The  second  focus  of  this  thesis  involves  in  situ  sampling  and  measurements  of  aerosols  in  the  S/UT.  During  the  NASA  DCOTSS  (ER-2  aircraft)  and  NOAA  SABRE  (WB-57  aircraft)  missions,  I  developed  and  deployed  two  aircraft  instruments  to:  1)  measure  S/UT  aerosol  concentration  and  size  distribution  across  a  range  of  140-2,500  nm  in  diameter,  and  2)  collect  S/UT  aerosol  samples  for  offline  chemical  composition  and  morphology  analysis  (Chapter  3).  My  work  yielded  a  valuable  dataset  of  aerosol  concentration,  size  distribution,  composition,  and  morphology  up  to  22  km  over  North  America.  This  dataset  is  essential  for  characterizing  the  baseline  state  of  S/UT  aerosols  and  discerning  the  effects  of  volcanic  and  wildfire  perturbations.Notably,  volcanic  plumes  from  La  Soufriere  eruptions  in  April  2021  were  sampled  repeatedly  in  the  stratosphere,  enabling  detailed  analysis  of  aerosol  concentration  and  size  distribution  within  these  volcanic  plumes  and  their  spatiotemporal  evolutions  in  the  stratosphere.  Contrary  to  the  conventional  wisdom  that  volcanic  eruptions  lead  to  increased  aerosol  size-evidenced  by  the  aftermath  of  massive  events  like  the  1991  Pinatubo  eruption-my  findings  from  the  2021  La  Soufriere  eruption  indicate  a  decrease  in  aerosol  effective  diameter  within  the  midlatitude  lower  stratosphere  due  to  a  significant  increase  in  small  particles  (  400  nm).  This  suggests  a  nuanced  impact  of  relatively  smaller  yet  more  frequent  eruptions.  The  radiative  and  ozone  impacts  of  these  volcanic  plumes  were  further  examined  using  the  SOCOL-AERv2  aerosol-chemistry-climate  model  (Chapter  4).Additionally,  encounters  with  wildfire  smoke  from  a  pyrocumulonimbus  (pyroCb)  event  were  recorded  in  the  UT.  These  pyroCb  smoke  aerosols  show  a  distinct  large  size  mode  (500-600  nm  diameter)  and  a  high  concentration  of  biomass  burning  organics.  The  radiative  effects  of  these  large  smoke  aerosols  were  assessed  using  radiative  transfer  calculations.  Subsequent  offline  analysis  of  the  S/UT  aerosol  samples  unveiled  the  prevalence  of  organic-containing  particles,  particularly  those  originating  from  biomass  burning  sources,  in  the  summer  stratosphere.  These  particles  were  predominantly  complex  mixtures  of  inorganic  and  organic  substances,  occasionally  intermingled  with  black  carbon  (Chapter  5).My  Ph.D.  work  integrates  fieldwork,  laboratory  experiments,  instrumentation,  and  computational  modeling  to  delve  into  the  properties,  perturbations,  and  radiative  effects  of  aerosols  in  the  S/UT.  This  multifaceted  approach  aids  in  quantifying  the  climate  and  chemical  impacts  of  S/UT  aerosols  and  underscores  the  imperative  to  increase  our  understanding  of  organic  and  biomass  burning  aerosols  in  this  region.
■590    ▼aSchool  code:  0084.
■650  4▼aAtmospheric  chemistry.
■650  4▼aClimate  change.
■650  4▼aEnvironmental  science.
■650  4▼aMeteorology.
■653    ▼aAerosols
■653    ▼aAirborne  measurements
■653    ▼aMicrophysical  properties
■653    ▼aOptical  properties
■653    ▼aRadiative  forcing
■653    ▼aStratosphere
■653    ▼aUpper  troposphere
■690    ▼a0371
■690    ▼a0404
■690    ▼a0768
■690    ▼a0557
■71020▼aHarvard  University▼bEngineering  and  Applied  Sciences  -  Engineering  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161434▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0034616 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치