본문

서브메뉴

Efficient Federated Graph Learning: Formulation, Algorithms and Applications.
Efficient Federated Graph Learning: Formulation, Algorithms and Applications.

상세정보

자료유형  
 학위논문
Control Number  
0017161449
International Standard Book Number  
9798383729649
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Yao, Yuhang.
Publication, Distribution, etc. (Imprint  
[S.l.] : Carnegie Mellon University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
173 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Joe-Wong, Carlee.
Dissertation Note  
Thesis (Ph.D.)--Carnegie Mellon University, 2024.
Summary, Etc.  
요약Graph neural networks aim to learn representations of graph-structured data that capture features associated with graph nodes as well as edges between the nodes. The Graph data, however, can be too large to be trained on a single server or naturally exist on multiple local clients. Strict data protection regulations such as the General Data Protection Regulation (GDPR) in Europe and Payment Aggregators and Payment Gateways (PAPG) in India also require that private data only be stored in local clients. Users may also not want to share their personal data with the server. Federated learning shows promise for preserving user privacy while training accurate models training models on data stored at multiple clients. Federated graph learning is then becoming an emerging topic with practical challenges. However, compared with federated learning with local data heterogeneity, there is no clear identification of key challenges in federated graph learning. Derived from real-world applications, we point out three unique challenges for federated graph learning: cross-client edges, cross-device heterogeneity with limited local data and temporal heterogeneity across clients. We then respectively introduce FedGCN, FedRule, and FedLink to overcome the challenges. We finally provide the vision for the future direction of such a topic.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Federated graph learning
Index Term-Uncontrolled  
Graph neural networks
Index Term-Uncontrolled  
Private data
Index Term-Uncontrolled  
Graph nodes
Added Entry-Corporate Name  
Carnegie Mellon University Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658293

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161449
■00520250211151358
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383729649
■035    ▼a(MiAaPQ)AAI31243944
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aYao,  Yuhang.▼0(orcid)0000-0002-7045-0002
■24510▼aEfficient  Federated  Graph  Learning:  Formulation,  Algorithms  and  Applications.
■260    ▼a[S.l.]▼bCarnegie  Mellon  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a173  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Joe-Wong,  Carlee.
■5021  ▼aThesis  (Ph.D.)--Carnegie  Mellon  University,  2024.
■520    ▼aGraph  neural  networks  aim  to  learn  representations  of  graph-structured  data  that  capture  features  associated  with  graph  nodes  as  well  as  edges  between  the  nodes.  The  Graph  data,  however,  can  be  too  large  to  be  trained  on  a  single  server  or  naturally  exist  on  multiple  local  clients.  Strict  data  protection  regulations  such  as  the  General  Data  Protection  Regulation  (GDPR)  in  Europe  and  Payment  Aggregators  and  Payment  Gateways  (PAPG)  in  India  also  require  that  private  data  only  be  stored  in  local  clients.  Users  may  also  not  want  to  share  their  personal  data  with  the  server.  Federated  learning  shows  promise  for  preserving  user  privacy  while  training  accurate  models  training  models  on  data  stored  at  multiple  clients.  Federated  graph  learning  is  then  becoming  an  emerging  topic  with  practical  challenges.  However,  compared  with  federated  learning  with  local  data  heterogeneity,  there  is  no  clear  identification  of  key  challenges  in  federated  graph  learning.  Derived  from  real-world  applications,  we  point  out  three  unique  challenges  for  federated  graph  learning:  cross-client  edges,  cross-device  heterogeneity  with  limited  local  data  and  temporal  heterogeneity  across  clients.  We  then  respectively  introduce  FedGCN,  FedRule,  and  FedLink  to  overcome  the  challenges.  We  finally  provide  the  vision  for  the  future  direction  of  such  a  topic.
■590    ▼aSchool  code:  0041.
■650  4▼aComputer  engineering.
■650  4▼aStatistics.
■650  4▼aInformation  technology.
■653    ▼aFederated  graph  learning
■653    ▼aGraph  neural  networks
■653    ▼aPrivate  data
■653    ▼aGraph  nodes
■690    ▼a0464
■690    ▼a0489
■690    ▼a0800
■690    ▼a0463
■71020▼aCarnegie  Mellon  University▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0041
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161449▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0034611 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치