본문

서브메뉴

Artificial Intelligence and Machine Learning: Unpacking High School CS Teachers' Perspectives and Pedagogical Approaches.
Artificial Intelligence and Machine Learning: Unpacking High School CS Teachers' Perspectives and Pedagogical Approaches.

상세정보

자료유형  
 학위논문
Control Number  
0017162556
International Standard Book Number  
9798383223826
Dewey Decimal Classification Number  
370
Main Entry-Personal Name  
Opps, Zachary.
Publication, Distribution, etc. (Imprint  
[S.l.] : Michigan State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
217 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
General Note  
Advisor: Yadav, Aman.
Dissertation Note  
Thesis (Ph.D.)--Michigan State University, 2024.
Summary, Etc.  
요약As the use of artificial intelligence (AI), especially machine learning (ML), has dramatically increased, K-12 schools have begun to deliver AI education; however, little is known about teachers' views on the field. This qualitative study investigated how U.S. high school computer science (CS) teachers conceptualize AI, the role of AI in their CS instruction, and the instructional curricula and pedagogies these educators use to bring AI into their CS instruction. Data was collected through semi-structured interviews with 23 educators teaching 9-12th grade CS courses in U.S. schools. Data collected from interviews was examined using thematic analysis resulting in seven themes. The findings suggest that teachers see great value in AI education and encourage schools to provide AI literacy instruction for all students while providing AI technical instruction in elective CS courses. Teachers demonstrated high levels of interest in the field but a shallow understanding of AI technology. The study's findings also showed that CS teachers know of the importance of AI ethics instruction but have a limited view of AI's impact on society. Additionally, the results point to a general lack of curricula and tools designed to teach K-12 students about AI, especially materials that emphasize critique of AI technology and its societal harms. The study's results contribute to a deeper understanding of 9-12th grade teachers' conceptions of AI and the challenges they face when implementing AI instruction. Implications for teachers, school leaders, curriculum developers, policy makers, teacher educators, and professional development (PD) providers are presented.
Subject Added Entry-Topical Term  
Education.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Educational technology.
Subject Added Entry-Topical Term  
Educational psychology.
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
CS courses
Index Term-Uncontrolled  
U.S. high school
Index Term-Uncontrolled  
CS instruction
Index Term-Uncontrolled  
AI education
Added Entry-Corporate Name  
Michigan State University Educational Psychology and Educational Technology - Doctor of Philosophy
Host Item Entry  
Dissertations Abstracts International. 86-01B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658278

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162556
■00520250211152025
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383223826
■035    ▼a(MiAaPQ)AAI31333257
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a370
■1001  ▼aOpps,  Zachary.▼0(orcid)0000-0001-8514-0210
■24510▼aArtificial  Intelligence  and  Machine  Learning:  Unpacking  High  School  CS  Teachers'  Perspectives  and  Pedagogical  Approaches.
■260    ▼a[S.l.]▼bMichigan  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a217  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-01,  Section:  B.
■500    ▼aAdvisor:  Yadav,  Aman.
■5021  ▼aThesis  (Ph.D.)--Michigan  State  University,  2024.
■520    ▼aAs  the  use  of  artificial  intelligence  (AI),  especially  machine  learning  (ML),  has  dramatically  increased,  K-12  schools  have  begun  to  deliver  AI  education;  however,  little  is  known  about  teachers'  views  on  the  field.  This  qualitative  study  investigated  how  U.S.  high  school  computer  science  (CS)  teachers  conceptualize  AI,  the  role  of  AI  in  their  CS  instruction,  and  the  instructional  curricula  and  pedagogies  these  educators  use  to  bring  AI  into  their  CS  instruction.  Data  was  collected  through  semi-structured  interviews  with  23  educators  teaching  9-12th  grade  CS  courses  in  U.S.  schools.  Data  collected  from  interviews  was  examined  using  thematic  analysis  resulting  in  seven  themes.  The  findings  suggest  that  teachers  see  great  value  in  AI  education  and  encourage  schools  to  provide  AI  literacy  instruction  for  all  students  while  providing  AI  technical  instruction  in  elective  CS  courses.  Teachers  demonstrated  high  levels  of  interest  in  the  field  but  a  shallow  understanding  of  AI  technology.  The  study's  findings  also  showed  that  CS  teachers  know  of  the  importance  of  AI  ethics  instruction  but  have  a  limited  view  of  AI's  impact  on  society.  Additionally,  the  results  point  to  a  general  lack  of  curricula  and  tools  designed  to  teach  K-12  students  about  AI,  especially  materials  that  emphasize  critique  of  AI  technology  and  its  societal  harms.  The  study's  results  contribute  to  a  deeper  understanding  of  9-12th  grade  teachers'  conceptions  of  AI  and  the  challenges  they  face  when  implementing  AI  instruction.  Implications  for  teachers,  school  leaders,  curriculum  developers,  policy  makers,  teacher  educators,  and  professional  development  (PD)  providers  are  presented.
■590    ▼aSchool  code:  0128.
■650  4▼aEducation.
■650  4▼aComputer  science.
■650  4▼aEducational  technology.
■650  4▼aEducational  psychology.
■653    ▼aMachine  learning
■653    ▼aCS  courses
■653    ▼aU.S.  high  school
■653    ▼aCS  instruction
■653    ▼aAI  education
■690    ▼a0515
■690    ▼a0800
■690    ▼a0984
■690    ▼a0525
■690    ▼a0710
■71020▼aMichigan  State  University▼bEducational  Psychology  and  Educational  Technology  -  Doctor  of  Philosophy.
■7730  ▼tDissertations  Abstracts  International▼g86-01B.
■790    ▼a0128
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162556▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0034596 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치