본문

서브메뉴

Deep Learning on Local Sites for Protein Structure and Function Analysis.
Deep Learning on Local Sites for Protein Structure and Function Analysis.
Deep Learning on Local Sites for Protein Structure and Function Analysis.

상세정보

Material Type  
 학위논문
 
0017161515
Date and Time of Latest Transaction  
20250211151406
ISBN  
9798382235714
DDC  
574
Author  
Alexander William Fox Derry.
Title/Author  
Deep Learning on Local Sites for Protein Structure and Function Analysis.
Publish Info  
[S.l.] : Stanford University., 2024
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Material Info  
261 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Russ Altman.
학위논문주기  
Thesis (Ph.D.)--Stanford University, 2024.
Abstracts/Etc  
요약Understanding how the three-dimensional structure of a protein leads to its function is important for determining disease mechanisms, developing targeted therapeutics, and engineering new proteins with desired functional characteristics. The expansion of protein structure databases due to experimental and computational advances provides an unprecedented opportunity to learn structure-function relationships in a data-driven manner. Deep learning methods that operate on protein structures have shown promise for specific tasks, but their utility for functional analysis has been limited due to inconsistencies in model training and evaluation, lack of labeled protein function data, and an inability to reconcile global predictions with local biochemical mechanisms. In this dissertation, I explore these challenges and propose a framework for protein analysis based on learning on local sites rather than the entire protein structure. First, to establish standards for model development and evaluation, I present work on (1) developing a suite of benchmark datasets, processing tools, and baseline models, and (2) quantifying the effect of differing structure compositions in the training data. I then describe a self-supervised learning method that leverages evolutionary relationships to learn general-purpose representations of local structural sites, and show how these representations enable improved performance on downstream tasks involving classification, search, and annotation of functional sites. By clustering millions of sites, I propose a framework for protein analysis based on conserved structural motifs which enables the discovery of functional relationships across protein classes. Finally, I present a method for explainable function annotation that predicts the overall function of a protein as well as the individual residues which are responsible.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Deep learning methods
Index Term-Uncontrolled  
Functional analysis
Index Term-Uncontrolled  
Protein structure
Index Term-Uncontrolled  
Structure-function relationships
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658211

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161515
■00520250211151406
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382235714
■035    ▼a(MiAaPQ)AAI31255839
■035    ▼a(MiAaPQ)zy646hk2720
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aAlexander  William  Fox  Derry.
■24510▼aDeep  Learning  on  Local  Sites  for  Protein  Structure  and  Function  Analysis.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a261  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Russ  Altman.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aUnderstanding  how  the  three-dimensional  structure  of  a  protein  leads  to  its  function  is  important  for  determining  disease  mechanisms,  developing  targeted  therapeutics,  and  engineering  new  proteins  with  desired  functional  characteristics.  The  expansion  of  protein  structure  databases  due  to  experimental  and  computational  advances  provides  an  unprecedented  opportunity  to  learn  structure-function  relationships  in  a  data-driven  manner.  Deep  learning  methods  that  operate  on  protein  structures  have  shown  promise  for  specific  tasks,  but  their  utility  for  functional  analysis  has  been  limited  due  to  inconsistencies  in  model  training  and  evaluation,  lack  of  labeled  protein  function  data,  and  an  inability  to  reconcile  global  predictions  with  local  biochemical  mechanisms.  In  this  dissertation,  I  explore  these  challenges  and  propose  a  framework  for  protein  analysis  based  on  learning  on  local  sites  rather  than  the  entire  protein  structure.  First,  to  establish  standards  for  model  development  and  evaluation,  I  present  work  on  (1)  developing  a  suite  of  benchmark  datasets,  processing  tools,  and  baseline  models,  and  (2)  quantifying  the  effect  of  differing  structure  compositions  in  the  training  data.  I  then  describe  a  self-supervised  learning  method  that  leverages  evolutionary  relationships  to  learn  general-purpose  representations  of  local  structural  sites,  and  show  how  these  representations  enable  improved  performance  on  downstream  tasks  involving  classification,  search,  and  annotation  of  functional  sites.  By  clustering  millions  of  sites,  I  propose  a  framework  for  protein  analysis  based  on  conserved  structural  motifs  which  enables  the  discovery  of  functional  relationships  across  protein  classes.  Finally,  I  present  a  method  for  explainable  function  annotation  that  predicts  the  overall  function  of  a  protein  as  well  as  the  individual  residues  which  are  responsible.
■590    ▼aSchool  code:  0212.
■650  4▼aBioinformatics.
■653    ▼aDeep  learning  methods
■653    ▼aFunctional  analysis
■653    ▼aProtein  structure
■653    ▼aStructure-function  relationships
■690    ▼a0800
■690    ▼a0715
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161515▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0034529 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치