본문

서브메뉴

Glass Transition Behavior, Interfacial Confinement Effects, and Sustainability in Thin Film and Bulk Polymer Materials.
Glass Transition Behavior, Interfacial Confinement Effects, and Sustainability in Thin Film and Bulk Polymer Materials.

상세정보

자료유형  
 학위논문
Control Number  
0017161566
International Standard Book Number  
9798382762500
Dewey Decimal Classification Number  
660
Main Entry-Personal Name  
Wang, Tong.
Publication, Distribution, etc. (Imprint  
[S.l.] : Northwestern University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
237 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Torkelson, John M.
Dissertation Note  
Thesis (Ph.D.)--Northwestern University, 2024.
Summary, Etc.  
요약Interfaces play a pivotal role in dictating the properties of polymers, particularly at the polymer/air interface, where polymer dynamics undergo significant enhancement, leading to deviations from bulk responses in key properties like the glass transition temperature (Tg). Understanding and eliminating the nanoconfinement behavior, exemplified by the Tg-confinement effect observed in polystyrene thin films, have been a longstanding challenge in polymer physics. Considerable research efforts have been dedicated to elucidating and fine-tuning this phenomenon across various polymer films. Moreover, achieving tunability in the Tg-confinement effect is crucial for various applications, but existing techniques often require complex synthesis processes or the incorporation of small molecules. This dissertation introduces a novel method to eliminate the Tg-confinement effect in polystyrene and poly(4-methylstyrene) films by synthesizing random copolymers containing only 2-3 mol% of 2-ethylhexyl acrylate with styrene or 4-methylstyrene, which only requires simple free radical synthesis. It is demonstrated that bulk fragility and the fragility-confinement effect are dominant factors influencing the Tg-confinement effect, indicating that the low level of 2-ethylhexyl acrylate units can alter the chain packing efficiency, potentially via the interdigitation of 2-ethylhexyl groups.The healing of polymer/polymer interfaces is imperative for enhancing the self-healing capability and reprocessability of polymer materials. Most reported autonomous self-healing polymers require embedding specially designed functional groups or unique polymer chain arrangements, limiting their applicability. Addressing these challenges, this dissertation presents a new approach to achieving autonomous self-healing copolymer materials solely based on commodity monomers while offering a wider range of workable compositions. Additionally, traditional polymer network materials, due to their crosslinked structure, have been challenging to recycle or reprocess. Covalent adaptable network (CAN) materials, capable of being reprocessed or reshaped under specific stimuli while retaining strong mechanical properties, offer a solution. This dissertation introduces the first chain-growth CAN crosslinked by thionourethane linkages, demonstrating rapid reprocessability, full self-healing capability, and resistance to creep.Through comprehensive investigations and innovative approaches, this dissertation contributes to advancing our understanding and utilization of polymer interfaces and self-healing materials, offering promising avenues for enhancing the performance and sustainability of polymer materials in various applications.
Subject Added Entry-Topical Term  
Chemical engineering.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Polymer chemistry.
Index Term-Uncontrolled  
Confinement effect
Index Term-Uncontrolled  
Covalent adaptable network
Index Term-Uncontrolled  
Fragility
Index Term-Uncontrolled  
Glass transition
Index Term-Uncontrolled  
Polymer
Index Term-Uncontrolled  
Self-healing
Added Entry-Corporate Name  
Northwestern University Chemical and Biological Engineering
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658194

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161566
■00520250211151414
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382762500
■035    ▼a(MiAaPQ)AAI31293134
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a660
■1001  ▼aWang,  Tong.▼0(orcid)0000-0003-2289-2452
■24510▼aGlass  Transition  Behavior,  Interfacial  Confinement  Effects,  and  Sustainability  in  Thin  Film  and  Bulk  Polymer  Materials.
■260    ▼a[S.l.]▼bNorthwestern  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a237  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Torkelson,  John  M.
■5021  ▼aThesis  (Ph.D.)--Northwestern  University,  2024.
■520    ▼aInterfaces  play  a  pivotal  role  in  dictating  the  properties  of  polymers,  particularly  at  the  polymer/air  interface,  where  polymer  dynamics  undergo  significant  enhancement,  leading  to  deviations  from  bulk  responses  in  key  properties  like  the  glass  transition  temperature  (Tg).  Understanding  and  eliminating  the  nanoconfinement  behavior,  exemplified  by  the  Tg-confinement  effect  observed  in  polystyrene  thin  films,  have  been  a  longstanding  challenge  in  polymer  physics.  Considerable  research  efforts  have  been  dedicated  to  elucidating  and  fine-tuning  this  phenomenon  across  various  polymer  films.  Moreover,  achieving  tunability  in  the  Tg-confinement  effect  is  crucial  for  various  applications,  but  existing  techniques  often  require  complex  synthesis  processes  or  the  incorporation  of  small  molecules.  This  dissertation  introduces  a  novel  method  to  eliminate  the  Tg-confinement  effect  in  polystyrene  and  poly(4-methylstyrene)  films  by  synthesizing  random  copolymers  containing  only  2-3  mol%  of  2-ethylhexyl  acrylate  with  styrene  or  4-methylstyrene,  which  only  requires  simple  free  radical  synthesis.  It  is  demonstrated  that  bulk  fragility  and  the  fragility-confinement  effect  are  dominant  factors  influencing  the  Tg-confinement  effect,  indicating  that  the  low  level  of  2-ethylhexyl  acrylate  units  can  alter  the  chain  packing  efficiency,  potentially  via  the  interdigitation  of  2-ethylhexyl  groups.The  healing  of  polymer/polymer  interfaces  is  imperative  for  enhancing  the  self-healing  capability  and  reprocessability  of  polymer  materials.  Most  reported  autonomous  self-healing  polymers  require  embedding  specially  designed  functional  groups  or  unique  polymer  chain  arrangements,  limiting  their  applicability.  Addressing  these  challenges,  this  dissertation  presents  a  new  approach  to  achieving  autonomous  self-healing  copolymer  materials  solely  based  on  commodity  monomers  while  offering  a  wider  range  of  workable  compositions.  Additionally,  traditional  polymer  network  materials,  due  to  their  crosslinked  structure,  have  been  challenging  to recycle  or  reprocess.  Covalent  adaptable  network  (CAN)  materials,  capable  of  being  reprocessed  or  reshaped  under  specific  stimuli  while  retaining  strong  mechanical  properties,  offer  a  solution.  This  dissertation  introduces  the  first  chain-growth  CAN  crosslinked  by  thionourethane  linkages,  demonstrating  rapid  reprocessability,  full  self-healing  capability,  and  resistance  to  creep.Through  comprehensive  investigations  and  innovative  approaches,  this  dissertation  contributes  to  advancing  our  understanding  and  utilization  of  polymer  interfaces  and  self-healing  materials,  offering  promising  avenues  for  enhancing  the  performance  and  sustainability  of  polymer  materials  in  various  applications.
■590    ▼aSchool  code:  0163.
■650  4▼aChemical  engineering.
■650  4▼aMaterials  science.
■650  4▼aPolymer  chemistry.
■653    ▼aConfinement  effect
■653    ▼aCovalent  adaptable  network
■653    ▼aFragility
■653    ▼aGlass  transition
■653    ▼aPolymer
■653    ▼aSelf-healing
■690    ▼a0542
■690    ▼a0794
■690    ▼a0495
■71020▼aNorthwestern  University▼bChemical  and  Biological  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0163
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161566▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0034512 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치