본문

서브메뉴

Distributional Learning of Syntactic Generalizations.
Distributional Learning of Syntactic Generalizations.

상세정보

자료유형  
 학위논문
Control Number  
0017162659
International Standard Book Number  
9798384022855
Dewey Decimal Classification Number  
401
Main Entry-Personal Name  
Li, Daoxin.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Pennsylvania., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
162 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: A.
General Note  
Advisor: Yang, Charles.
Dissertation Note  
Thesis (Ph.D.)--University of Pennsylvania, 2024.
Summary, Etc.  
요약During language acquisition, children are tasked with the challenge of determining which words can appear in which syntactic constructions. This has been long recognized as a learnability paradox. On one hand, there are generalizations that children must learn. On the other hand, language is known for its arbitrariness, so children also need to decide when not to generalize and just resort to memorization. Finally, the picture is further complicated by the lack of negative evidence during language acquisition. In this dissertation, by applying a generalization learning model, The Tolerance/Sufficiency Principle, I provide novel approaches to the acquisition of a range of syntactic generalizations.Chapter 2 examines the acquisition of verb argument structure, where there are systematic syntax-semantics mappings. I argue that knowledge of such syntax-semantics mappings should not and need not be innate. Instead, I propose a computational model that can learn these mappings distributionally from modest-sized input data. I also conduct model comparisons to illustrate that the proposed model yields learning outcomes that are more accurate than a model which relies on Bayesian inference.Chapter 3 moves on to a case where the relation between syntax and semantics is far less systematic - the acquisition of recursive structures. The rules for recursion differ across languages and structures. Through corpus analyses of different recursive structures across languages, I demonstrate that the rules for recursive embedding can be established through purely formal analyses of one-level embedding data, and the core semantic properties such as alienable possession vs. inalienable possession can be identified subsequently.In Chapter 4, I conduct a series of artificial language learning experiments, which find that both adults and children can indeed use purely distributional cues to acquire recursive structures as predicted: They will allow recursive embedding in an artificial grammar when there are sufficient cues in the exposure supporting the generalization, even though they never hear recursively embedded sentences in the exposure phase.Ultimately, this dissertation aims to contribute quantitatively rigorous and psychologically real solutions to a well-known learning problem, offering new perspectives for the mechanisms of learning generalizations.
Subject Added Entry-Topical Term  
Linguistics.
Subject Added Entry-Topical Term  
Language.
Subject Added Entry-Topical Term  
Bilingual education.
Index Term-Uncontrolled  
Distributional learning
Index Term-Uncontrolled  
Generalization
Index Term-Uncontrolled  
Language acquisition
Index Term-Uncontrolled  
Recursive structure
Index Term-Uncontrolled  
Syntax
Index Term-Uncontrolled  
Verb argument structure
Added Entry-Corporate Name  
University of Pennsylvania Linguistics
Host Item Entry  
Dissertations Abstracts International. 86-02A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658173

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162659
■00520250211152038
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384022855
■035    ▼a(MiAaPQ)AAI31335991
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a401
■1001  ▼aLi,  Daoxin.
■24510▼aDistributional  Learning  of  Syntactic  Generalizations.
■260    ▼a[S.l.]▼bUniversity  of  Pennsylvania.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a162  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  A.
■500    ▼aAdvisor:  Yang,  Charles.
■5021  ▼aThesis  (Ph.D.)--University  of  Pennsylvania,  2024.
■520    ▼aDuring  language  acquisition,  children  are  tasked  with  the  challenge  of  determining  which  words  can  appear  in  which  syntactic  constructions.  This  has  been  long  recognized  as  a  learnability  paradox.  On  one  hand,  there  are  generalizations  that  children  must  learn.  On  the  other  hand,  language  is  known  for  its  arbitrariness,  so  children  also  need  to  decide  when  not  to  generalize  and  just  resort  to  memorization.  Finally,  the  picture  is  further  complicated  by  the  lack  of  negative  evidence  during  language  acquisition.  In  this  dissertation,  by  applying  a  generalization  learning  model,  The  Tolerance/Sufficiency  Principle,  I  provide  novel  approaches  to  the  acquisition  of  a  range  of  syntactic  generalizations.Chapter  2  examines  the  acquisition  of  verb  argument  structure,  where  there  are  systematic  syntax-semantics  mappings.  I  argue  that  knowledge  of  such  syntax-semantics  mappings  should  not  and  need  not  be  innate.  Instead,  I  propose  a  computational  model  that  can  learn  these  mappings  distributionally  from  modest-sized  input  data.  I  also  conduct  model  comparisons  to  illustrate  that  the  proposed  model  yields  learning  outcomes  that  are  more  accurate  than  a  model  which  relies  on  Bayesian  inference.Chapter  3  moves  on  to  a  case  where  the  relation  between  syntax  and  semantics  is  far  less  systematic  -  the  acquisition  of  recursive  structures.  The  rules  for  recursion  differ  across  languages  and  structures.  Through  corpus  analyses  of  different  recursive  structures  across  languages,  I  demonstrate  that  the  rules  for  recursive  embedding  can  be  established  through  purely  formal  analyses  of  one-level  embedding  data,  and  the  core  semantic  properties  such  as  alienable  possession  vs.  inalienable  possession  can  be  identified  subsequently.In  Chapter  4,  I  conduct  a  series  of  artificial  language  learning  experiments,  which  find  that  both  adults  and  children  can  indeed  use  purely  distributional  cues  to  acquire  recursive  structures  as  predicted:  They  will  allow  recursive  embedding  in  an  artificial  grammar  when  there  are  sufficient  cues  in  the  exposure  supporting  the  generalization,  even  though  they  never  hear  recursively  embedded  sentences  in  the  exposure  phase.Ultimately,  this  dissertation  aims  to  contribute  quantitatively  rigorous  and  psychologically  real  solutions  to  a  well-known  learning  problem,  offering  new  perspectives  for  the  mechanisms  of  learning  generalizations.
■590    ▼aSchool  code:  0175.
■650  4▼aLinguistics.
■650  4▼aLanguage.
■650  4▼aBilingual  education.
■653    ▼aDistributional  learning
■653    ▼aGeneralization
■653    ▼aLanguage  acquisition
■653    ▼aRecursive  structure
■653    ▼aSyntax
■653    ▼aVerb  argument  structure
■690    ▼a0290
■690    ▼a0679
■690    ▼a0282
■71020▼aUniversity  of  Pennsylvania▼bLinguistics.
■7730  ▼tDissertations  Abstracts  International▼g86-02A.
■790    ▼a0175
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162659▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0034491 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치