본문

서브메뉴

An Optimization Framework for Kinetic Model Building from Concentration and Spectroscopic Data.
An Optimization Framework for Kinetic Model Building from Concentration and Spectroscopic Data.

상세정보

자료유형  
 학위논문
Control Number  
0017161385
International Standard Book Number  
9798382339344
Dewey Decimal Classification Number  
660
Main Entry-Personal Name  
Krumpolc, Thomas J.
Publication, Distribution, etc. (Imprint  
[S.l.] : Carnegie Mellon University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
163 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Biegler, Lorenz T.
Dissertation Note  
Thesis (Ph.D.)--Carnegie Mellon University, 2024.
Summary, Etc.  
요약This dissertation deals with the development of an optimization framework for kinetic model building from experimentally measured concentration and spectroscopic data. We develop mechanistic models based on first-principles and use a statistical criteria for model discrimination when more than one model is proposed. While many predictive model building methods exist using data-driven approaches, mechanistic models provide a physical understanding of resulting estimates and allow the investigator to elicit additional information about the underlying structure of the system. Tightly coupled with kinetic model building is parameter estimation, where degrees of freedom are related to unknown reaction rate parameters and other sources of measurement uncertainty such as unknown initial conditions and spectroscopic absorbance. Accurate estimation methods which maximize the information from experimentally collected data are imperative, but detailed physics-based models with multiple datasets present a computational challenges as the problem size and complexity increases. In this work, we present strategies to address these common obstacles. The model building framework is based on simultaneous full-discretization approaches and interior-point nonlinear programming (NLP) solvers which exploit problem structure and exact second derivatives resulting in favorable computational efficiency. First, we review relevant nonlinear optimization theory, which motivates the use of interior-point algorithms for kinetic model building. In addition, we discussion advantages and disadvantages of different approaches for parameter estimation from spectroscopic data, with special emphasis on the advantages of the simultaneous solution strategy. To present the flexibility and robustness of this framework, we investigate various reaction networks with real-world experimentally measured data. Chapter 3 describes an application of nonlinear mixed-effects models, an alternative modeling technique commonly used in pharmacometrics to capture batch-to-batch variation between experiments, to a single response hydrogenation reaction in a trickle-bed batch reactor system. Chapters 4, 5, and 6 examine different applications of our kinetic model building framework to obtain accurate predictions of rate constants, concentration profiles, and pure component absorbance profiles from in situ spectroscopic data. In Chapter 4 and Chapter 6, we develop population balance models for ring-opening polymerization reactions. Chapter 5 presents a challenging case study where temperature dependence and hydrogen-bonding effects play an important role. All modeling strategies use the state-of-the-art NLP solver IPOPT and the algebraic modeling language Pyomo.
Subject Added Entry-Topical Term  
Chemical engineering.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Computational chemistry.
Index Term-Uncontrolled  
Spectroscopic data
Index Term-Uncontrolled  
Kinetic model building
Index Term-Uncontrolled  
Data-driven approaches
Index Term-Uncontrolled  
Spectroscopic absorbance
Index Term-Uncontrolled  
Computational efficiency
Added Entry-Corporate Name  
Carnegie Mellon University Chemical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:658054

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161385
■00520250211151349
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382339344
■035    ▼a(MiAaPQ)AAI31242989
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a660
■1001  ▼aKrumpolc,  Thomas  J.
■24513▼aAn  Optimization  Framework  for  Kinetic  Model  Building  from  Concentration  and  Spectroscopic  Data.
■260    ▼a[S.l.]▼bCarnegie  Mellon  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a163  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Biegler,  Lorenz  T.
■5021  ▼aThesis  (Ph.D.)--Carnegie  Mellon  University,  2024.
■520    ▼aThis  dissertation  deals  with  the  development  of  an  optimization  framework  for  kinetic  model  building  from  experimentally  measured  concentration  and  spectroscopic  data.  We  develop  mechanistic  models  based  on  first-principles  and  use  a  statistical  criteria  for  model  discrimination  when  more  than  one  model  is  proposed.  While  many  predictive  model  building  methods  exist  using  data-driven  approaches,  mechanistic  models  provide  a  physical  understanding  of  resulting  estimates  and  allow  the  investigator  to  elicit  additional  information  about  the  underlying  structure  of  the  system.  Tightly  coupled  with  kinetic  model  building  is  parameter  estimation,  where  degrees  of  freedom  are  related  to  unknown  reaction  rate  parameters  and  other  sources  of  measurement  uncertainty  such  as  unknown  initial  conditions  and  spectroscopic  absorbance.  Accurate  estimation  methods  which  maximize  the  information  from  experimentally  collected  data  are  imperative,  but  detailed  physics-based  models  with  multiple  datasets  present  a  computational  challenges  as  the  problem  size  and  complexity  increases.  In  this  work,  we  present  strategies  to  address  these  common  obstacles.  The  model  building  framework  is  based  on  simultaneous  full-discretization  approaches  and  interior-point  nonlinear  programming  (NLP)  solvers  which  exploit  problem  structure  and  exact  second  derivatives  resulting  in  favorable  computational  efficiency. First,  we  review  relevant  nonlinear  optimization  theory,  which  motivates  the  use  of  interior-point  algorithms  for  kinetic  model  building.  In  addition,  we  discussion  advantages  and  disadvantages  of  different  approaches  for  parameter  estimation  from  spectroscopic  data,  with  special  emphasis  on  the  advantages  of  the  simultaneous  solution  strategy.  To  present  the  flexibility  and  robustness  of  this  framework,  we  investigate  various  reaction  networks  with  real-world  experimentally  measured  data.  Chapter  3  describes  an  application  of  nonlinear  mixed-effects  models,  an  alternative  modeling  technique  commonly  used  in  pharmacometrics  to  capture  batch-to-batch  variation  between  experiments,  to  a  single  response  hydrogenation  reaction  in  a  trickle-bed  batch  reactor  system.  Chapters  4,  5,  and  6  examine  different  applications  of  our  kinetic  model  building  framework  to  obtain  accurate  predictions  of  rate  constants,  concentration  profiles,  and  pure  component  absorbance  profiles  from  in  situ  spectroscopic  data.  In  Chapter  4  and  Chapter  6,  we  develop  population  balance  models  for  ring-opening  polymerization  reactions.  Chapter  5  presents  a  challenging  case  study  where  temperature  dependence  and  hydrogen-bonding  effects  play  an  important  role.  All  modeling  strategies  use  the  state-of-the-art  NLP  solver  IPOPT  and  the  algebraic  modeling  language  Pyomo.
■590    ▼aSchool  code:  0041.
■650  4▼aChemical  engineering.
■650  4▼aAnalytical  chemistry.
■650  4▼aComputational  chemistry.
■653    ▼aSpectroscopic  data
■653    ▼aKinetic  model  building
■653    ▼aData-driven  approaches
■653    ▼aSpectroscopic  absorbance
■653    ▼aComputational  efficiency
■690    ▼a0542
■690    ▼a0486
■690    ▼a0219
■71020▼aCarnegie  Mellon  University▼bChemical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0041
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161385▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0034372 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치