본문

서브메뉴

Theoretical Foundations and Applications of Integrated Learning Architectures for Graphs.
Theoretical Foundations and Applications of Integrated Learning Architectures for Graphs.

상세정보

자료유형  
 학위논문
Control Number  
0017162972
International Standard Book Number  
9798384342045
Dewey Decimal Classification Number  
658
Main Entry-Personal Name  
Dax, Victoria Magdalena.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
116 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: A.
General Note  
Advisor: Kochenderfer, Mykel.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Graph Neural Networks (GNNs) have become important in the machine learning landscape because of their ability to model complex, structured data. This thesis presents approaches for blending GNNs with other deep learning methods, such as the decision-making capabilities of reinforcement learning (RL) or the generative abilities of variational auto-encoders (VAEs), to enhance the practical functionality of GNNs and to expand their applicability in various domains.The fundamental challenge addressed in this thesis is overcoming the inherent difficulties in integrating GNNs with other methodologies. GNNs excel in processing structured data but face issues like oversmoothing, particularly with increasing network depth. On the other hand, methods such as VAEs offer flexible generative abilities but have their own set of training and scalability challenges. And, while recurrent neural networks (RNNs) excel at processing temporal patterns, they introduce concerns of catastrophic forgetting and vanishing gradients. The solutions explored here involve novel combinations of these diverse techniques, aiming to leverage their strengths while mitigating their weaknesses.We start by exploring GNNs' theoretical properties, especially their generalization properties, before transitioning into practical applications. First, we demonstrate an enhancement of GNNs by integrating RNNs for advanced time-series predictions in interconnected systems. Then, we combine GNNs with variational auto-encoders (VAEs) to improve out-of-distribution generalizability and model interpretability through disentanglement of the embedding space in motion prediction tasks. We end by discussing using GNNs in deep RL techniques, specifically for combinatorial optimization tasks.
Subject Added Entry-Topical Term  
Decision making.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Web studies.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-03A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657992

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162972
■00520250211152118
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384342045
■035    ▼a(MiAaPQ)AAI31460351
■035    ▼a(MiAaPQ)Stanfordsp191ym8296
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a658
■1001  ▼aDax,  Victoria  Magdalena.
■24510▼aTheoretical  Foundations  and  Applications  of  Integrated  Learning  Architectures  for  Graphs.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a116  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  A.
■500    ▼aAdvisor:  Kochenderfer,  Mykel.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aGraph  Neural  Networks  (GNNs)  have  become  important  in  the  machine  learning  landscape  because  of  their  ability  to  model  complex,  structured  data.  This  thesis  presents  approaches  for  blending  GNNs  with  other  deep  learning  methods,  such  as  the  decision-making  capabilities  of  reinforcement  learning  (RL)  or  the  generative  abilities  of  variational  auto-encoders  (VAEs),  to  enhance  the  practical  functionality  of  GNNs  and  to  expand  their  applicability  in  various  domains.The  fundamental  challenge  addressed  in  this  thesis  is  overcoming  the  inherent  difficulties  in  integrating  GNNs  with  other  methodologies.  GNNs  excel  in  processing  structured  data  but  face  issues  like  oversmoothing,  particularly  with  increasing  network  depth.  On  the  other  hand,  methods  such  as  VAEs  offer  flexible  generative  abilities  but  have  their  own  set  of  training  and  scalability  challenges.  And,  while  recurrent  neural  networks  (RNNs)  excel  at  processing  temporal  patterns,  they  introduce  concerns  of  catastrophic  forgetting  and  vanishing  gradients.  The  solutions  explored  here  involve  novel  combinations  of  these  diverse  techniques,  aiming  to  leverage  their  strengths  while  mitigating  their  weaknesses.We  start  by  exploring  GNNs'  theoretical  properties,  especially  their  generalization  properties,  before  transitioning  into  practical  applications.  First,  we  demonstrate  an  enhancement  of  GNNs  by  integrating  RNNs  for  advanced  time-series  predictions  in  interconnected  systems.  Then,  we  combine  GNNs  with  variational  auto-encoders  (VAEs)  to  improve  out-of-distribution  generalizability  and  model  interpretability  through  disentanglement  of  the  embedding  space  in  motion  prediction  tasks.  We  end  by  discussing  using  GNNs  in  deep  RL  techniques,  specifically  for  combinatorial  optimization  tasks.
■590    ▼aSchool  code:  0212.
■650  4▼aDecision  making.
■650  4▼aNeural  networks.
■650  4▼aWeb  studies.
■690    ▼a0800
■690    ▼a0646
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-03A.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162972▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0034310 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치