본문

서브메뉴

Using Single Column Models to Understand the Mechanisms Controlling Rainfall.
Using Single Column Models to Understand the Mechanisms Controlling Rainfall.

상세정보

자료유형  
 학위논문
Control Number  
0017164208
International Standard Book Number  
9798384436102
Dewey Decimal Classification Number  
519
Main Entry-Personal Name  
Cohen, Sean.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
144 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Sobel, Adam;Biasutti, Michela.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2024.
Summary, Etc.  
요약Rainfall is one of the central features of Earth's climate. Understanding the physical mechanisms that control it has deep social impacts on water and food security. In this thesis, we use a series of idealized single column models to reveal mechanisms driving steady-state precipitation both in the tropics and in the global mean. These mechanisms yield a deeper understanding of precipitation in model outputs (Chapter 1), observations (Chapter 2), and projections for a warming climate (Chapter 3). Chapter 1 centers around model development. We use the single column model version of NCAR's Community Earth System Model (CESM) to better understand its simulation of tropical rainfall under various representations of radiation, convection, and circulation. Using a variety of existing methods - the weak temperature gradient (WTG), damped gravity wave (DGW), and spectral weak temperature gradient (SWTG) method - we parameterize the column's large-scale dynamics and consider the response of steady-state tropical precipitation to changes in relative sea surface temperature (SST). Radiative cooling is either specified or interactive, and the convective parameterization is run using two different values of a parameter that controls the degree of convective inhibition (CIN) required to cap a convective plume. Under all three methods, circulation strength is decreased when greater CIN is required, that is, when convection is allowed to occur more easily. This effect is shown to come from increased static stability in the column's reference radiative-convective equilibrium profile and results in decreased rainfall over warm SSTs. This argument can be extended to aquaplanet simulations in CESM, which show that the warmest regions in the tropics rain less when greater CIN is required to cap a convective plume. This suggests that the parameter in CESM which controls the degree of convective inhibition significantly affects the strength of the model's intertropical convergence zone (ITCZ). In Chapter 2, we use a similar set of idealized models to better understand the observed climatology of tropical rainfall. The distribution of climatological rainfall over tropical oceans can be thought of as primarily the result of two mechanisms: conditional instability in the free troposphere and convergence in the boundary layer. We modify the SWTG method to assess the relative influence of these mechanisms. In its original configuration, the SWTG method applies the weak temperature gradient approximation to the full depth of the troposphere without consideration of the stronger horizontal temperature and pressure gradients in the planetary boundary layer (PBL). To account for convergence in the PBL induced by these stronger pressure gradients, we modify the SWTG method to include an externally-specified vertical mass flux at the PBL top. When forced using the climatological SST and 850 hPa vertical velocity taken from observation-based reanalysis data, the Forced SWTG method reproduces most features of the observed annual mean tropical rainfall climatology. Its predictions remain largely unchanged when it is forced by a spatially uniform SST field. Insofar as the boundary layer convergence field can be interpreted as an external forcing on the column, this would indicate that it controls the precipitation field. However, local column stability likely also plays a role in determining PBL convergence, so this method does not fully untangle the causality behind the climatological precipitation field. In Chapter 3, we shift our perspective from column dynamics to column radiative transfer. Global mean rainfall is known to be constrained by the atmosphere's column-integrated radiative cooling. However, the surface temperature dependence of this radiative constraint on mean rainfall, and the mechanisms which set it, are not well understood. We present a simple spectral model for changes in the clear-sky column-integrated radiative cooling with surface warming. We find that surface warming increases column-integrated radiative cooling - and thus mean rainfall - by decreasing atmospheric transmission in spectral regions with significant longwave emission, that is, by closing the water vapor window. Water vapor's spectroscopy implies a hydrological sensitivity whose magnitude is roughly set by surface Planck emission, and which peaks near tropical surface temperatures. We also examine the role of carbon dioxide and shortwave heating, which primarily act to mute the hydrological response to warming. We validate our findings using line-by-line calculations. Overall, we demonstrate that idealized frameworks, such as those provided by single column models, can elucidate mechanisms controlling tropical and global-mean precipitation. However, the relevance of these results to more complex simulations and observations is tempered by the extent to which our simplifying assumptions neglect important physics.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Atmospheric sciences.
Subject Added Entry-Topical Term  
Climate change.
Index Term-Uncontrolled  
Rainfall
Index Term-Uncontrolled  
Single column models
Index Term-Uncontrolled  
Weak temperature gradient
Index Term-Uncontrolled  
Damped gravity wave
Index Term-Uncontrolled  
Static stability
Added Entry-Corporate Name  
Columbia University Applied Mathematics
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657984

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164208
■00520250211152933
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384436102
■035    ▼a(MiAaPQ)AAI31562917
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519
■1001  ▼aCohen,  Sean.
■24510▼aUsing  Single  Column  Models  to  Understand  the  Mechanisms  Controlling  Rainfall.
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a144  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Sobel,  Adam;Biasutti,  Michela.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2024.
■520    ▼aRainfall  is  one  of  the  central  features  of  Earth's  climate.  Understanding  the  physical  mechanisms  that  control  it  has  deep  social  impacts  on  water  and  food  security.  In  this  thesis,  we  use  a  series  of  idealized  single  column  models  to  reveal  mechanisms  driving  steady-state  precipitation  both  in  the  tropics  and  in  the  global  mean.  These  mechanisms  yield  a  deeper  understanding  of  precipitation  in  model  outputs  (Chapter  1),  observations  (Chapter  2),  and  projections  for  a  warming  climate  (Chapter  3).  Chapter  1  centers  around  model  development.  We  use  the  single  column  model  version  of  NCAR's  Community  Earth  System  Model  (CESM)  to  better  understand  its  simulation  of  tropical  rainfall  under  various  representations  of  radiation,  convection,  and  circulation.  Using  a  variety  of  existing  methods  -  the  weak  temperature  gradient  (WTG),  damped  gravity  wave  (DGW),  and  spectral  weak  temperature  gradient  (SWTG)  method  -  we  parameterize  the  column's  large-scale  dynamics  and  consider  the  response  of  steady-state  tropical  precipitation  to  changes  in  relative  sea  surface  temperature  (SST).  Radiative  cooling  is  either  specified  or  interactive,  and  the  convective  parameterization  is  run  using  two  different  values  of  a  parameter  that  controls  the  degree  of  convective  inhibition  (CIN)  required  to  cap  a  convective  plume.  Under  all  three  methods,  circulation  strength  is  decreased  when  greater  CIN  is  required,  that  is,  when  convection  is  allowed  to  occur  more  easily.  This  effect  is  shown  to  come  from  increased  static  stability  in  the  column's  reference  radiative-convective  equilibrium  profile  and  results  in  decreased  rainfall  over  warm  SSTs.  This  argument  can  be  extended  to  aquaplanet  simulations  in  CESM,  which  show  that  the  warmest  regions  in  the  tropics  rain  less  when  greater  CIN  is  required  to  cap  a  convective  plume.  This  suggests  that  the  parameter  in  CESM  which  controls  the  degree  of  convective  inhibition  significantly  affects  the  strength  of  the  model's  intertropical  convergence  zone  (ITCZ).  In  Chapter  2,  we  use  a  similar  set  of  idealized  models  to  better  understand  the  observed  climatology  of  tropical  rainfall.  The  distribution  of  climatological  rainfall  over  tropical  oceans  can  be  thought  of  as  primarily  the  result  of  two  mechanisms:  conditional  instability  in  the  free  troposphere  and  convergence  in  the  boundary  layer.  We  modify  the  SWTG  method  to  assess  the  relative  influence  of  these  mechanisms.  In  its  original  configuration,  the  SWTG  method  applies  the  weak  temperature  gradient  approximation  to  the  full  depth  of  the  troposphere  without  consideration  of  the  stronger  horizontal  temperature  and  pressure  gradients  in  the  planetary  boundary  layer  (PBL).  To  account  for  convergence  in  the  PBL  induced  by  these  stronger  pressure  gradients,  we  modify  the  SWTG  method  to  include  an  externally-specified  vertical  mass  flux  at  the  PBL  top.  When  forced  using  the  climatological  SST  and  850  hPa  vertical  velocity  taken  from  observation-based  reanalysis  data,  the  Forced  SWTG  method  reproduces  most  features  of  the  observed  annual  mean  tropical  rainfall  climatology.  Its  predictions  remain  largely  unchanged  when  it  is  forced  by  a  spatially  uniform  SST  field.  Insofar  as  the  boundary  layer  convergence  field  can  be  interpreted  as  an  external  forcing  on  the  column,  this  would  indicate  that  it  controls  the  precipitation  field.  However,  local  column  stability  likely  also  plays  a  role  in  determining  PBL  convergence,  so  this  method  does  not  fully  untangle  the  causality  behind  the  climatological  precipitation  field.  In  Chapter  3,  we  shift  our  perspective  from  column  dynamics  to  column  radiative  transfer.  Global  mean  rainfall  is  known  to  be  constrained  by  the  atmosphere's  column-integrated  radiative  cooling.  However,  the  surface  temperature  dependence  of  this  radiative  constraint  on  mean  rainfall,  and  the  mechanisms  which  set  it,  are  not  well  understood.  We  present  a  simple  spectral  model  for  changes  in  the  clear-sky  column-integrated  radiative  cooling  with  surface  warming.  We  find  that  surface  warming  increases  column-integrated  radiative  cooling  -  and  thus  mean  rainfall  -  by  decreasing  atmospheric  transmission  in  spectral  regions  with  significant  longwave  emission,  that  is,  by  closing  the  water  vapor  window.  Water  vapor's  spectroscopy  implies  a  hydrological  sensitivity  whose  magnitude  is  roughly  set  by  surface  Planck  emission,  and  which  peaks  near  tropical  surface  temperatures.  We  also  examine  the  role  of  carbon  dioxide  and  shortwave  heating,  which  primarily  act  to  mute  the  hydrological  response  to  warming.  We  validate  our  findings  using  line-by-line  calculations.  Overall,  we  demonstrate  that  idealized  frameworks,  such  as  those  provided  by  single  column  models,  can  elucidate  mechanisms  controlling  tropical  and  global-mean  precipitation.  However,  the  relevance  of  these  results  to  more  complex  simulations  and  observations  is  tempered  by  the  extent  to  which  our  simplifying  assumptions  neglect  important  physics.
■590    ▼aSchool  code:  0054.
■650  4▼aApplied  mathematics.
■650  4▼aAtmospheric  sciences.
■650  4▼aClimate  change.
■653    ▼aRainfall  
■653    ▼aSingle  column  models  
■653    ▼aWeak  temperature  gradient  
■653    ▼aDamped  gravity  wave
■653    ▼aStatic  stability
■690    ▼a0364
■690    ▼a0725
■690    ▼a0404
■71020▼aColumbia  University▼bApplied  Mathematics.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164208▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0034302 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치