본문

서브메뉴

Resource Allocation and Scheduling Algorithms for Big Data Systems.
Resource Allocation and Scheduling Algorithms for Big Data Systems.

상세정보

자료유형  
 학위논문
Control Number  
0017160740
International Standard Book Number  
9798383696118
Dewey Decimal Classification Number  
519
Main Entry-Personal Name  
Sun, Xiao.
Publication, Distribution, etc. (Imprint  
[S.l.] : State University of New York at Stony Brook., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
153 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Liu, Zhenhua.
Dissertation Note  
Thesis (Ph.D.)--State University of New York at Stony Brook, 2024.
Summary, Etc.  
요약Big data is an omnipresent force in today's world. A crucial aim for numerous contemporary businesses and scientific endeavors is to harness and utilize as much information as they can, as swiftly as possible. However, without the right resource allocation and scheduling algorithms, systems struggle to deliver satisfactory services to millions with diverse needs. This thesis introduces innovative algorithms and frameworks specifically designed for resource allocation and scheduling in big data systems, addressing various levels of granularity. Ranging from multi-user environments to individual users and singular jobs, the proposed methodologies not only boost performance but also maintain fairness and efficiency across these systems. Furthermore, our approach effectively bridges the gap between theory and practical applications. Through extensive evaluation using real-world data on popular platforms, our methods demonstrate significant improvements over existing solutions. The findings of this thesis have gained recognition, being published in top system conferences such as EuroSys, SIGCOMM, and Middleware.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Systems science.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Scheduling algorithms
Index Term-Uncontrolled  
Big data system
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Resource allocation
Added Entry-Corporate Name  
State University of New York at Stony Brook Applied Mathematics and Statistics
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657938

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160740
■00520250211151109
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383696118
■035    ▼a(MiAaPQ)AAI31144012
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519
■1001  ▼aSun,  Xiao.
■24510▼aResource  Allocation  and  Scheduling  Algorithms  for  Big  Data  Systems.
■260    ▼a[S.l.]▼bState  University  of  New  York  at  Stony  Brook.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a153  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Liu,  Zhenhua.
■5021  ▼aThesis  (Ph.D.)--State  University  of  New  York  at  Stony  Brook,  2024.
■520    ▼aBig  data  is  an  omnipresent  force  in  today's  world.  A  crucial  aim  for  numerous  contemporary  businesses  and  scientific  endeavors  is  to  harness  and  utilize  as  much  information  as  they  can,  as  swiftly  as  possible.  However,  without  the  right  resource  allocation  and  scheduling  algorithms,  systems  struggle  to  deliver  satisfactory  services  to  millions  with  diverse  needs. This  thesis  introduces  innovative  algorithms  and  frameworks  specifically  designed  for  resource  allocation  and  scheduling  in  big  data  systems,  addressing  various  levels  of  granularity.  Ranging  from  multi-user  environments  to  individual  users  and  singular  jobs,  the  proposed  methodologies  not  only  boost  performance  but  also  maintain  fairness  and  efficiency  across  these  systems.  Furthermore,  our  approach  effectively  bridges  the  gap  between  theory  and  practical  applications.  Through  extensive  evaluation  using  real-world  data  on  popular  platforms,  our  methods  demonstrate  significant  improvements  over  existing  solutions.  The  findings  of  this  thesis  have  gained  recognition,  being  published  in  top  system  conferences  such  as  EuroSys,  SIGCOMM,  and  Middleware.
■590    ▼aSchool  code:  0771.
■650  4▼aApplied  mathematics.
■650  4▼aComputer  science.
■650  4▼aSystems  science.
■650  4▼aInformation  technology.
■653    ▼aScheduling  algorithms
■653    ▼aBig  data  system
■653    ▼aOptimization
■653    ▼aResource  allocation
■690    ▼a0364
■690    ▼a0489
■690    ▼a0984
■690    ▼a0790
■71020▼aState  University  of  New  York  at  Stony  Brook▼bApplied  Mathematics  and  Statistics.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0771
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160740▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0034259 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치