본문

서브메뉴

Towards a Fall-Tolerant Framework for Bipedal Robots.
Towards a Fall-Tolerant Framework for Bipedal Robots.

상세정보

자료유형  
 학위논문
Control Number  
0017162763
International Standard Book Number  
9798382738284
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Mungai, Margaret Eva Wangari.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
216 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Grizzle, Jessy.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약This dissertation focuses on developing a fall-tolerant framework for bipedal robots, aiming to enhance their ability to navigate challenging situations by effectively assessing, adapting, and responding to uncertainties and disturbances. Bipedal robots, with their unique capability to navigate diverse terrains and restore mobility, are ideal for assisting in critical and day-to-day tasks. However, their real-world deployment is limited due to factors like high-dimensional complex dynamics and a smaller support polygon, making it difficult to achieve stable motion, especially in the face of disturbances and uncertainties. To address these limitations, the dissertation develops robust controllers and reliable fall prediction algorithms. Feedback controllers have been used in the literature to ensure robustness against disturbances and uncertainties. However, the infeasibility of accounting for all disturbances and uncertainties during real-world operations makes falls inevitable. Falls are undesirable as they can prevent a robot from completing its task, result in damage to the surrounding area, or lead to injuries. Therefore, the dissertation emphasizes the importance of implementing robust controllers and employing methods to predict falls.This research begins by introducing a systematic method to design control objectives for highly constrained systems and concludes by presenting a 1D convolutional neural network fall prediction algorithm capable of not only predicting falls but also estimating the time to react. The effectiveness of the control objectives is demonstrated through robust, comfortable closed-loop sit-to-stand motions for a fully actuated lower-limb exoskeleton, Atalante. The performance of the proposed fall prediction algorithms is evaluated in simulation using a planar-four link robot based on Atalante and in hardware and simulation for the bipedal robot Digit.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
Computer engineering.
Index Term-Uncontrolled  
Feedback control
Index Term-Uncontrolled  
Fall prediction
Index Term-Uncontrolled  
Bipedal robots
Index Term-Uncontrolled  
Humanoids
Index Term-Uncontrolled  
Exoskeletons
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Trajectory optimization
Added Entry-Corporate Name  
University of Michigan Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657797

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162763
■00520250211152052
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382738284
■035    ▼a(MiAaPQ)AAI31348866
■035    ▼a(MiAaPQ)umichrackham005484
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aMungai,  Margaret  Eva  Wangari.
■24510▼aTowards  a  Fall-Tolerant  Framework  for  Bipedal  Robots.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a216  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Grizzle,  Jessy.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aThis  dissertation  focuses  on  developing  a  fall-tolerant  framework  for  bipedal  robots,  aiming  to  enhance  their  ability  to  navigate  challenging  situations  by  effectively  assessing,  adapting,  and  responding  to  uncertainties  and  disturbances.  Bipedal  robots,  with  their  unique  capability  to  navigate  diverse  terrains  and  restore  mobility,  are  ideal  for  assisting  in  critical  and  day-to-day  tasks.  However,  their  real-world  deployment  is  limited  due  to  factors  like  high-dimensional  complex  dynamics  and  a  smaller  support  polygon,  making  it  difficult  to  achieve  stable  motion,  especially  in  the  face  of  disturbances  and  uncertainties. To  address  these  limitations,  the  dissertation  develops  robust  controllers  and  reliable  fall  prediction  algorithms.  Feedback  controllers  have  been  used  in  the  literature  to  ensure  robustness  against  disturbances  and  uncertainties.  However,  the  infeasibility  of  accounting  for  all  disturbances  and  uncertainties  during  real-world  operations  makes  falls  inevitable.  Falls  are  undesirable  as  they  can  prevent  a  robot  from  completing  its  task,  result  in  damage  to  the  surrounding  area,  or  lead  to  injuries.  Therefore,  the  dissertation  emphasizes  the  importance  of  implementing  robust  controllers  and  employing  methods  to  predict  falls.This  research  begins  by  introducing  a  systematic  method  to  design  control  objectives  for  highly  constrained  systems  and  concludes  by  presenting  a  1D  convolutional  neural  network  fall  prediction  algorithm  capable  of  not  only  predicting  falls  but  also  estimating  the  time  to  react.  The  effectiveness  of  the  control  objectives  is  demonstrated  through  robust,  comfortable  closed-loop  sit-to-stand  motions  for  a  fully  actuated  lower-limb  exoskeleton,  Atalante.  The  performance  of  the  proposed  fall  prediction  algorithms  is  evaluated  in  simulation  using  a  planar-four  link  robot  based  on  Atalante  and  in  hardware  and  simulation  for  the  bipedal  robot  Digit.
■590    ▼aSchool  code:  0127.
■650  4▼aElectrical  engineering.
■650  4▼aMechanical  engineering.
■650  4▼aRobotics.
■650  4▼aComputer  engineering.
■653    ▼aFeedback  control
■653    ▼aFall  prediction  
■653    ▼aBipedal  robots
■653    ▼aHumanoids
■653    ▼aExoskeletons
■653    ▼aMachine  learning
■653    ▼aTrajectory  optimization
■690    ▼a0771
■690    ▼a0548
■690    ▼a0544
■690    ▼a0464
■690    ▼a0800
■71020▼aUniversity  of  Michigan▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162763▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0034115 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치