본문

서브메뉴

Design and Manufacturing of Spatially Distributed and Interconnected Porous Architectures for Smart Dental Implants.
Design and Manufacturing of Spatially Distributed and Interconnected Porous Architectures for Smart Dental Implants.

상세정보

자료유형  
 학위논문
Control Number  
0017162775
International Standard Book Number  
9798382738444
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Dabaja, Rana.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
152 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Banu, Mihaela;Popa, Bogdan I.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Dental implants serve as a prosthetic for missing teeth, aimed to replicate the natural tooth function. Titanium is the preferred material in the dental implant industry due to its biocompatibility with natural bone. Despite their widespread use, high associated risks persist, often detectable only long after insertion. Significant failures arise during the wound healing or bone remodeling phase accompanied by common occurrences of bone loss. Peri-implantitis, occurring post-insertion, leads to progressive bone loss attributed to a significant stiffness mismatch between the titanium implant and mandibular/maxillary bone. This mismatch creates non-uniform stress distributions, forming stress shields at the interface between the dental root and patient bone resulting in bone resorption. Additionally, edentulous patients with preexisting diseases causing low quality of bone, face even higher risks and, in some instances, are ineligible for dental implants due to weak metal-natural bond formation during the wound healing phase. Recent research focuses on inducing interconnected porous networks to encourage bone ingrowth and reduce stiffness to mimic bone properties. Pore characteristics, encompassing size, interconnectivity, porosity, and architecture, significantly influence cell attachment and mechanical structure properties. While existing research explores various porous architectures, a notable gap exists in comprehensive studies that evaluate and compare their biological and mechanical performance.This work presents a novel approach to designing and additively manufacturing (3D printing) a titanium dental implant. The design incorporates an embedded spatially distributed and interconnected microporous architecture with functionally graded properties that closely replicate the physical, biological, and mechanical behavior of bone. Two optimal porous architectures for biomedical applications, the triply periodic minimal surface (TPMS) gyroid variants and Voronoi stochastic are compared based on manufacturability, cell infiltration and adhesion, simulation, and compression testing. Understanding the impact of additive manufacturing on porous structure resolution facilitates the optimization of porous architectures and geometries. Using computer-aided design (CAD), the TPMS gyroid and Voronoi stochastic structures were modeled. A study on the feasibility of 3D printing porous titanium structures determined that the most favorable porous interconnectivity and distribution were achieved at a pore size of approximately ≥250µm. Subsequently, porous constructs were fabricated based on manufacturability for a set of in-vitro experiments, wherein a variant of the TPMS gyroid demonstrated superior cell adhesion and proliferation.Given its outperformance in biologically and manufacturing aspects, The TPMS solid gyroid variant underwent mechanical testing at a range of pore size and porosity combinations to produce a functionally graded porous structure. The mechanical behavior is validated from a 2D digital image correlation developed compression test, micro computed tomography (micro-CT), and microscopy. Ultimately, the TPMS solid gyroid structures with a gradient of pore size (6- 34%) and porosity (approximately 100-400 µm) demonstrate promising results. In summary, this dissertation developed a framework for fabricating a functionally graded porous dental implant with enhanced biological and mechanical properties, along with methods for comprehensive characterization.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Dentistry.
Subject Added Entry-Topical Term  
Biomechanics.
Subject Added Entry-Topical Term  
Mechanical engineering.
Index Term-Uncontrolled  
Additive manufacturing
Index Term-Uncontrolled  
Scaffold
Index Term-Uncontrolled  
Cell proliferation
Index Term-Uncontrolled  
Triply periodic minimal surfaces
Index Term-Uncontrolled  
Stochastic
Index Term-Uncontrolled  
Porous architectures
Added Entry-Corporate Name  
University of Michigan Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657794

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162775
■00520250211152053
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382738444
■035    ▼a(MiAaPQ)AAI31348878
■035    ▼a(MiAaPQ)umichrackham005506
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aDabaja,  Rana.
■24510▼aDesign  and  Manufacturing  of  Spatially  Distributed  and  Interconnected  Porous  Architectures  for  Smart  Dental  Implants.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a152  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Banu,  Mihaela;Popa,  Bogdan  I.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aDental  implants  serve  as  a  prosthetic  for  missing  teeth,  aimed  to  replicate  the  natural  tooth  function.  Titanium  is  the  preferred  material  in  the  dental  implant  industry  due  to  its  biocompatibility  with  natural  bone.  Despite  their  widespread  use,  high  associated  risks  persist,  often  detectable  only  long  after  insertion.  Significant  failures  arise  during  the  wound  healing  or  bone  remodeling  phase  accompanied  by  common  occurrences  of  bone  loss.  Peri-implantitis,  occurring  post-insertion,  leads  to  progressive  bone  loss  attributed  to  a  significant  stiffness  mismatch  between  the  titanium  implant  and  mandibular/maxillary  bone.  This  mismatch  creates  non-uniform  stress  distributions,  forming  stress  shields  at  the  interface  between  the  dental  root  and  patient  bone  resulting  in  bone  resorption.  Additionally,  edentulous  patients  with  preexisting  diseases  causing  low  quality  of  bone,  face  even  higher  risks  and,  in  some  instances,  are  ineligible  for  dental  implants  due  to  weak  metal-natural  bond  formation  during  the  wound  healing  phase.  Recent  research  focuses  on  inducing  interconnected  porous  networks  to  encourage  bone  ingrowth  and  reduce  stiffness  to  mimic  bone  properties.  Pore  characteristics,  encompassing  size,  interconnectivity,  porosity,  and  architecture,  significantly  influence  cell  attachment  and  mechanical  structure  properties.  While  existing  research  explores  various  porous  architectures,  a  notable  gap  exists  in  comprehensive  studies  that  evaluate  and  compare  their  biological  and  mechanical  performance.This  work  presents  a  novel  approach  to  designing  and  additively  manufacturing  (3D  printing)  a  titanium  dental  implant.  The  design  incorporates  an  embedded  spatially  distributed  and  interconnected  microporous  architecture  with  functionally  graded  properties  that  closely  replicate  the  physical,  biological,  and  mechanical  behavior  of  bone.  Two  optimal  porous  architectures  for  biomedical  applications,  the  triply  periodic  minimal  surface  (TPMS)  gyroid  variants  and  Voronoi  stochastic  are  compared  based  on  manufacturability,  cell  infiltration  and  adhesion,  simulation,  and  compression  testing.  Understanding  the  impact  of  additive  manufacturing  on  porous  structure  resolution  facilitates  the  optimization  of  porous  architectures  and  geometries.  Using  computer-aided  design  (CAD),  the  TPMS  gyroid  and  Voronoi  stochastic  structures  were  modeled.  A  study  on  the  feasibility  of  3D  printing  porous  titanium  structures  determined  that  the  most  favorable  porous  interconnectivity  and  distribution  were  achieved  at  a  pore  size  of  approximately  ≥250µm.  Subsequently,  porous  constructs  were  fabricated  based  on  manufacturability  for  a  set  of  in-vitro  experiments,  wherein  a  variant  of  the  TPMS  gyroid  demonstrated  superior  cell  adhesion  and  proliferation.Given  its  outperformance  in  biologically  and  manufacturing  aspects,  The  TPMS  solid  gyroid  variant  underwent  mechanical  testing  at  a  range  of  pore  size  and  porosity  combinations  to  produce  a  functionally  graded  porous  structure.  The  mechanical  behavior  is  validated  from  a  2D  digital  image  correlation  developed  compression  test,  micro  computed  tomography  (micro-CT),  and  microscopy.  Ultimately,  the  TPMS  solid  gyroid  structures  with  a  gradient  of  pore  size  (6-  34%)  and  porosity  (approximately  100-400  µm)  demonstrate  promising  results.  In  summary,  this  dissertation  developed  a  framework  for  fabricating  a  functionally  graded  porous  dental  implant  with  enhanced  biological  and  mechanical  properties,  along  with  methods  for  comprehensive  characterization.
■590    ▼aSchool  code:  0127.
■650  4▼aEngineering.
■650  4▼aDentistry.
■650  4▼aBiomechanics.
■650  4▼aMechanical  engineering.
■653    ▼aAdditive  manufacturing
■653    ▼aScaffold
■653    ▼aCell  proliferation
■653    ▼aTriply  periodic  minimal  surfaces
■653    ▼aStochastic
■653    ▼aPorous  architectures
■690    ▼a0537
■690    ▼a0548
■690    ▼a0567
■690    ▼a0648
■71020▼aUniversity  of  Michigan▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162775▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0034112 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치