본문

서브메뉴

Computational Methods for Single-Cell and Spatial Multimodal Data Integration.
Computational Methods for Single-Cell and Spatial Multimodal Data Integration.

상세정보

자료유형  
 학위논문
Control Number  
0017162791
International Standard Book Number  
9798382738864
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Gao, Chao.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
132 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Welch, Joshua.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Advancements in sequencing technologies have revolutionized our ability to measure biomolecules. Single-cell single-omics sequencing allows for the examination of genome, transcriptome, epigenome at unprecedented resolution, providing a detailed view of cellular diversity and function. Furthermore, it addressed the limitations of bulk RNA sequencing that only profiles averaged gene expression across cells, masking the cellular heterogeneities. Following this, single-cell multimodal omics enables simultaneous analysis of multiple types of molecular measurements in the same cell. Such paired information has revealed genetic and epigenetic landscapes as well as their relationships. Further, spatial sequencing technologies provide molecular measurements with localization within tissues, adding an essential dimension to our understanding of biological complexity. They have assisted our research about how cells interact within spatial context, crucial for comprehending tissue organization, development, and disease pathology. In this dissertation, I propose three computational methods to address the challenges posed by each of these data types for identifying the heterogeneities within cell populations and tissue regions, advancing our knowledge of biological systems.Integrating diverse single-cell unimodal datasets offers tremendous opportunities for unbiased, comprehensive, quantitative definition of cell identities. The published single-cell data integration approaches are not designed for integration of multiple modalities or not scalable to massive datasets. None of these methods can incorporate new data without recalculating from scratch. To this end, I develop an online learning algorithm to solve the integrative nonnegative matrix factorization (Online iNMF). For cell type inference, I apply Online iNMF to integrate large-scale, continually arriving single-cell datasets of diverse molecular modalities, including gene expression, chromatin accessibility, and DNA methylation. Online iNMF converges rapidly and decouples the peak memory usage from the size of the entire dataset. Online iNMF shows that the improved computational efficiency is not at the cost of dataset alignment and cluster preservation performance. Online iNMF's ability to iteratively incorporate data is useful in building single-cell multi-omic atlases. Single-cell multimodal epigenomic profiling simultaneously measures multiple histone modifications and chromatin accessibility in the same cells. Such parallel measurements provide opportunities to investigate how epigenomic modalities vary together across cell populations. I propose ConvNet-VAE, a variational autoencoder comprising one-dimensional convolutional layers, for dimensionality reduction. After window-based genome binning, ConvNet-VAE leverages the multi-track and sequential nature of these data. I apply ConvNet-VAE to integrate histone modification marks and chromatin accessibility profiled from juvenile mouse brain and human bone marrow. Compared to multimodal VAEs with only fully connected layers, ConvNet-VAE can achieve better performance in dimensionality reduction and batch correction, while using significantly fewer parameters. The advantage of ConvNet-VAE increases with the number of modalities, making it a promising tool as the number of jointly profiled epigenomic modalities grows.Multimodal spatial profiling has allowed for the simultaneous investigation of transcriptomics, proteomics, and epigenomics at the individual cell/bead/spot level in the tissue. I devise spaMVGAE, a multimodal variational autoencoder employing graph convolutional networks. By incorporating spatial location information, spaMVGAE adapts to various modalities and learns a joint low-dimensional embedding of cells/beads/spots for domain detection. I apply spaMVGAE to spatially resolved multimodal datasets from different biological contexts, such as breast cancer, mouse bone development, and adult mouse brain. spaMVGAE accurately detects regions of interest by capturing the heterogeneous and complex molecular makeup of the cells or tissue microenvironments. spaMVGAE scales to large datasets and carries out joint integration across multiple tissue sections.
Subject Added Entry-Topical Term  
Bioinformatics.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Molecular biology.
Subject Added Entry-Topical Term  
Genetics.
Index Term-Uncontrolled  
Single-cell single-omics sequencing
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Bulk RNA sequencing
Index Term-Uncontrolled  
Biological complexity
Index Term-Uncontrolled  
Single-cell unimodal datasets
Added Entry-Corporate Name  
University of Michigan Bioinformatics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657787

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162791
■00520250211152055
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382738864
■035    ▼a(MiAaPQ)AAI31348905
■035    ▼a(MiAaPQ)umichrackham005416
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aGao,  Chao.
■24510▼aComputational  Methods  for  Single-Cell  and  Spatial  Multimodal  Data  Integration.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a132  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Welch,  Joshua.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aAdvancements  in  sequencing  technologies  have  revolutionized  our  ability  to  measure  biomolecules.  Single-cell  single-omics  sequencing  allows  for  the  examination  of  genome,  transcriptome,  epigenome  at  unprecedented  resolution,  providing  a  detailed  view  of  cellular  diversity  and  function.  Furthermore,  it  addressed  the  limitations  of  bulk  RNA  sequencing  that  only  profiles  averaged  gene  expression  across  cells,  masking  the  cellular  heterogeneities.  Following  this,  single-cell  multimodal  omics  enables  simultaneous  analysis  of  multiple  types  of  molecular  measurements  in  the  same  cell.  Such  paired  information  has  revealed  genetic  and  epigenetic  landscapes  as  well  as  their  relationships.  Further,  spatial  sequencing  technologies  provide  molecular  measurements  with  localization  within  tissues,  adding  an  essential  dimension  to  our  understanding  of  biological  complexity.  They  have  assisted  our  research  about  how  cells  interact  within  spatial  context,  crucial  for  comprehending  tissue  organization,  development,  and  disease  pathology.  In  this  dissertation,  I  propose  three  computational  methods  to  address  the  challenges  posed  by  each  of  these  data  types  for  identifying  the  heterogeneities  within  cell  populations  and  tissue  regions,  advancing  our  knowledge  of  biological  systems.Integrating  diverse  single-cell  unimodal  datasets  offers  tremendous  opportunities  for  unbiased,  comprehensive,  quantitative  definition  of  cell  identities.  The  published  single-cell  data  integration  approaches  are  not  designed  for  integration  of  multiple  modalities  or  not  scalable  to  massive  datasets.  None  of  these  methods  can  incorporate  new  data  without  recalculating  from  scratch.  To  this  end,  I  develop  an  online  learning  algorithm  to  solve  the  integrative  nonnegative  matrix  factorization  (Online  iNMF).  For  cell  type  inference,  I  apply  Online  iNMF  to  integrate  large-scale,  continually  arriving  single-cell  datasets  of  diverse  molecular  modalities,  including  gene  expression,  chromatin  accessibility,  and  DNA  methylation.  Online  iNMF  converges  rapidly  and  decouples  the  peak  memory  usage  from  the  size  of  the  entire  dataset.  Online  iNMF  shows  that  the  improved  computational  efficiency  is  not  at  the  cost  of  dataset  alignment  and  cluster  preservation  performance.  Online  iNMF's  ability  to  iteratively  incorporate  data  is  useful  in  building  single-cell  multi-omic  atlases. Single-cell  multimodal  epigenomic  profiling  simultaneously  measures  multiple  histone  modifications  and  chromatin  accessibility  in  the  same  cells.  Such  parallel  measurements  provide  opportunities  to  investigate  how  epigenomic  modalities  vary  together  across  cell  populations.  I  propose  ConvNet-VAE,  a  variational  autoencoder  comprising  one-dimensional  convolutional  layers,  for  dimensionality  reduction.  After  window-based  genome  binning,  ConvNet-VAE  leverages  the  multi-track  and  sequential  nature  of  these  data.  I  apply  ConvNet-VAE  to  integrate  histone  modification  marks  and  chromatin  accessibility  profiled  from  juvenile  mouse  brain  and  human  bone  marrow.  Compared  to  multimodal  VAEs  with  only  fully  connected  layers,  ConvNet-VAE  can  achieve  better  performance  in  dimensionality  reduction  and  batch  correction,  while  using  significantly  fewer  parameters.  The  advantage  of  ConvNet-VAE  increases  with  the  number  of  modalities,  making  it  a  promising  tool  as  the  number  of  jointly  profiled  epigenomic  modalities  grows.Multimodal  spatial  profiling  has  allowed  for  the  simultaneous  investigation  of  transcriptomics,  proteomics,  and  epigenomics  at  the  individual  cell/bead/spot  level  in  the  tissue.  I  devise  spaMVGAE,  a  multimodal  variational  autoencoder  employing  graph  convolutional  networks.  By  incorporating  spatial  location  information,  spaMVGAE  adapts  to  various  modalities  and  learns  a  joint  low-dimensional  embedding  of  cells/beads/spots  for  domain  detection.  I  apply  spaMVGAE  to  spatially  resolved  multimodal  datasets  from  different  biological  contexts,  such  as  breast  cancer,  mouse  bone  development,  and  adult  mouse  brain.  spaMVGAE  accurately  detects  regions  of  interest  by  capturing  the  heterogeneous  and  complex  molecular  makeup  of  the  cells  or  tissue  microenvironments.  spaMVGAE  scales  to  large  datasets  and  carries  out  joint  integration  across  multiple  tissue  sections.
■590    ▼aSchool  code:  0127.
■650  4▼aBioinformatics.
■650  4▼aBiomedical  engineering.
■650  4▼aMolecular  biology.
■650  4▼aGenetics.
■653    ▼aSingle-cell  single-omics  sequencing  
■653    ▼aMachine  learning
■653    ▼aBulk  RNA  sequencing  
■653    ▼aBiological  complexity
■653    ▼aSingle-cell  unimodal  datasets
■690    ▼a0715
■690    ▼a0541
■690    ▼a0800
■690    ▼a0369
■690    ▼a0307
■71020▼aUniversity  of  Michigan▼bBioinformatics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162791▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0034105 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치