본문

서브메뉴

Lithium-Ion Battery Formation Modeling and Diagnostics.
Lithium-Ion Battery Formation Modeling and Diagnostics.

상세정보

자료유형  
 학위논문
Control Number  
0017162833
International Standard Book Number  
9798382739731
Dewey Decimal Classification Number  
621
Main Entry-Personal Name  
Weng, Andrew.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
289 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Stefanopoulou, Anna.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약The world needs to transition to sustainable energy as quickly as possible. A cornerstone of this transition is a fully electrified transportation sector which will require the production of automotive-grade lithium-ion batteries at a massive scale. Among the many challenges of battery production, the battery formation step, the last step in battery manufacturing, is both paramount and problematic. It is paramount since all batteries undergo the formation process to build a resilient solid electrolyte interphase (SEI) and to screen for defects. It is problematic because the formation process is expensive to operate, is a major source of factory energy demand, requires larger factory footprints, and takes an order of magnitude longer than nearly every other manufacturing step. Despite the centrality of the formation process in battery manufacturing, steps taken to optimize formation protocols remain ad hoc in the absence of fundamental design principles and physical models. In this thesis, we develop models and methods to enable advances in battery formation protocol design, battery manufacturing process control, and battery lifetime prediction. The work begins by introducing a physics-based electrochemical model of the battery formation process which, for the first time, bridges the gap between the electrochemistry of SEI formation and full-cell performance metrics. We demonstrate that the model can predict emergent system properties such as SEI passivation and cell aging. Using the model, we also verified that faster formation protocols are achievable without compromising battery lifetime. Next, we take a data-driven approach to studying the battery formation process through the lens of scalable diagnostic features, or ``electrochemical fingerprints.'' We show that these diagnostic features can be used to improve battery manufacturing process control and for predicting the impact of formation protocols on battery lifetime immediately after manufacturing. However, great care is needed to ensure reproducible data collection. Finally, the thesis ends by investigating the question of ``how much variability is too much,'' i.e. how much process control is really in battery manufacturing? We demonstrate that, when dissimilar battery cells are cycled in a parallel configuration, the degradation trajectory of individual cells may converge, suggesting that some amount of variability in cell properties at the beginning of life may be tolerated.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Chemical engineering.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Physical chemistry.
Index Term-Uncontrolled  
Battery manufacturing
Index Term-Uncontrolled  
Electrochemical modeling
Index Term-Uncontrolled  
Lithium-ion batteries
Index Term-Uncontrolled  
Battery formation
Index Term-Uncontrolled  
Battery lifetime prediction
Index Term-Uncontrolled  
SEI growth
Added Entry-Corporate Name  
University of Michigan Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657774

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162833
■00520250211152101
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382739731
■035    ▼a(MiAaPQ)AAI31349020
■035    ▼a(MiAaPQ)umichrackham005373
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621
■1001  ▼aWeng,  Andrew.
■24510▼aLithium-Ion  Battery  Formation  Modeling  and  Diagnostics.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a289  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Stefanopoulou,  Anna.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aThe  world  needs  to  transition  to  sustainable  energy  as  quickly  as  possible.  A  cornerstone  of  this  transition  is  a  fully  electrified  transportation  sector  which  will  require  the  production  of  automotive-grade  lithium-ion  batteries  at  a  massive  scale.  Among  the  many  challenges  of  battery  production,  the  battery  formation  step,  the  last  step  in  battery  manufacturing,  is  both  paramount  and  problematic.  It  is  paramount  since  all  batteries  undergo  the  formation  process  to  build  a  resilient  solid  electrolyte  interphase  (SEI)  and  to  screen  for  defects.  It  is  problematic  because  the  formation  process  is  expensive  to  operate,  is  a  major  source  of  factory  energy  demand,  requires  larger  factory  footprints,  and  takes  an  order  of  magnitude  longer  than  nearly  every  other  manufacturing  step.  Despite  the  centrality  of  the  formation  process  in  battery  manufacturing,  steps  taken  to  optimize  formation  protocols  remain  ad  hoc  in  the  absence  of  fundamental  design  principles  and  physical  models.    In  this  thesis,  we  develop  models  and  methods  to  enable  advances  in  battery  formation  protocol  design,  battery  manufacturing  process  control,  and  battery  lifetime  prediction.  The  work  begins  by  introducing  a  physics-based  electrochemical  model  of  the  battery  formation  process  which,  for  the  first  time,  bridges  the  gap  between  the  electrochemistry  of  SEI  formation  and  full-cell  performance  metrics.  We  demonstrate  that  the  model  can  predict  emergent  system  properties  such  as  SEI  passivation  and  cell  aging.  Using  the  model,  we  also  verified  that  faster  formation  protocols  are  achievable  without  compromising  battery  lifetime.  Next,  we  take  a  data-driven  approach  to  studying  the  battery  formation  process  through  the  lens  of  scalable  diagnostic  features,  or  ``electrochemical  fingerprints.''  We  show  that  these  diagnostic  features  can  be  used  to  improve  battery  manufacturing  process  control  and  for  predicting  the  impact  of  formation  protocols  on  battery  lifetime  immediately  after  manufacturing.  However,  great  care  is  needed  to  ensure  reproducible  data  collection.  Finally,  the  thesis  ends  by  investigating  the  question  of  ``how  much  variability  is  too  much,''  i.e.  how  much  process  control  is  really  in  battery  manufacturing?  We  demonstrate  that,  when  dissimilar  battery  cells  are  cycled  in  a  parallel  configuration,  the  degradation  trajectory  of  individual  cells  may  converge,  suggesting  that  some  amount  of  variability  in  cell  properties  at  the  beginning  of  life  may  be  tolerated.
■590    ▼aSchool  code:  0127.
■650  4▼aEnergy.
■650  4▼aChemical  engineering.
■650  4▼aMechanical  engineering.
■650  4▼aPhysical  chemistry.
■653    ▼aBattery  manufacturing
■653    ▼aElectrochemical  modeling
■653    ▼aLithium-ion  batteries
■653    ▼aBattery  formation
■653    ▼aBattery  lifetime  prediction
■653    ▼aSEI  growth
■690    ▼a0548
■690    ▼a0542
■690    ▼a0791
■690    ▼a0494
■71020▼aUniversity  of  Michigan▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162833▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0033992 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치