본문

서브메뉴

Investigations into the Thermodynamics and Kinetics of Nanoscale Structures.
Investigations into the Thermodynamics and Kinetics of Nanoscale Structures.

상세정보

자료유형  
 학위논문
Control Number  
0017164299
International Standard Book Number  
9798342138949
Dewey Decimal Classification Number  
540
Main Entry-Personal Name  
Annadanam, Rayaprolu Goutham Sreekar.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
116 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: El-Azab, Anter;Zhang, Xinghang;Wang, Haiyan;Wharry, Janelle.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약This dissertation contains a series of investigations into the thermodynamics and kinetics of nanoscale structures. The first investigation focused upon understanding the nanoscale void shrinkage in copper under room-temperature ion irradiation, with the goal of validating the hypothesis that the void shrinkage at room temperature is due to a biased absorption of interstitials. Phase-field modeling was used, and the simulations revealed that void shrinkage arises from biased absorption of interstitials agreeing with the experimental findings, thus providing insights into the physical mechanisms of radiation response of nanoscale voids in metallic materials under ion irradiation. The second part of this dissertation tackles the concurrent shape change, size fluctuation, shrinkage and migration of voids at elevated temperatures. The phase field simulations predicted the spheroidization of faceted voids, void shrinkage, rapid migration of small voids, and explained the underlying mechanisms. A part of this investigation focused on the dissociation of long, pre-existing voids under heavy ion irradiation. The phase field simulations showed that the fragmentation of voids occurs due to a necking mechanism, which is controlled by competing kinetics of atoms diffusion toward and away from the necked region.The next part of this dissertation features a combined thermodynamics and molecular dynamics investigation of the conversion of stacking fault tetrahedra to helium filled bubbles under dual (Kr, He)-ion irradiated copper. We hypothesized a previously unreported mechanism for removal of these stacking faults in irradiated copper, that helium atoms migrate into the stacking fault pushing the native atoms to one side to aggregate vacancies together then reside in these vacancies to form bubbles. This mechanism was confirmed by molecular dynamics simulations.The last investigation focused on understanding the growth of Au interface layers around vertically aligned NiO nanoscale pillars embedded in TiN thin films, grown on top of Au pillars embedded in TiN layer. The same thin film configuration also included the formation of Ni agglomerates in the Au pillars in the lower layer. A thermodynamic investigation of various morphology and configurations confirmed that interdiffusion of Au and Ni is energetically favorable, which interprets the observed film morphology. The findings of this study are vital for understanding the formation mechanisms of complex vertically aligned nanocomposites (VANs) and future designs of new three-phase VAN structures with complex morphologies.
Subject Added Entry-Topical Term  
Tin.
Subject Added Entry-Topical Term  
Thermodynamics.
Subject Added Entry-Topical Term  
Nanocomposites.
Subject Added Entry-Topical Term  
Bubbles.
Subject Added Entry-Topical Term  
High temperature.
Subject Added Entry-Topical Term  
Copper.
Subject Added Entry-Topical Term  
Point defects.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Helium.
Subject Added Entry-Topical Term  
Thin films.
Subject Added Entry-Topical Term  
Radiation.
Subject Added Entry-Topical Term  
Embryos.
Subject Added Entry-Topical Term  
Solid solutions.
Subject Added Entry-Topical Term  
Nuclear reactors.
Subject Added Entry-Topical Term  
Temperature effects.
Subject Added Entry-Topical Term  
Phase transitions.
Subject Added Entry-Topical Term  
Kinetics.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Condensed matter physics.
Subject Added Entry-Topical Term  
High temperature physics.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Nuclear engineering.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657768

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164299
■00520250211152945
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342138949
■035    ▼a(MiAaPQ)AAI31606844
■035    ▼a(MiAaPQ)Purdue26349178
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a540
■1001  ▼aAnnadanam,  Rayaprolu  Goutham  Sreekar.
■24510▼aInvestigations  into  the  Thermodynamics  and  Kinetics  of  Nanoscale  Structures.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a116  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  El-Azab,  Anter;Zhang,  Xinghang;Wang,  Haiyan;Wharry,  Janelle.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aThis  dissertation  contains  a  series  of  investigations  into  the  thermodynamics  and  kinetics  of  nanoscale  structures.  The  first  investigation  focused  upon  understanding  the  nanoscale  void  shrinkage  in  copper  under  room-temperature  ion  irradiation,  with  the  goal  of  validating  the  hypothesis  that  the  void  shrinkage  at  room  temperature  is  due  to  a  biased  absorption  of  interstitials.  Phase-field  modeling  was  used,  and  the  simulations  revealed  that  void  shrinkage  arises  from  biased  absorption  of  interstitials  agreeing  with  the  experimental  findings,  thus  providing  insights  into  the  physical  mechanisms  of  radiation  response  of  nanoscale  voids  in  metallic  materials  under  ion  irradiation.  The  second  part  of  this  dissertation  tackles  the  concurrent  shape  change,  size  fluctuation,  shrinkage  and  migration  of  voids  at  elevated  temperatures.  The  phase  field  simulations  predicted  the  spheroidization  of  faceted  voids,  void  shrinkage,  rapid  migration  of  small  voids,  and  explained  the  underlying  mechanisms.  A  part  of  this  investigation  focused  on  the  dissociation  of  long,  pre-existing  voids  under  heavy  ion  irradiation.  The  phase  field  simulations  showed  that  the  fragmentation  of  voids  occurs  due  to  a  necking  mechanism,  which  is  controlled  by  competing  kinetics  of  atoms  diffusion  toward  and  away  from  the  necked  region.The  next  part  of  this  dissertation  features  a  combined  thermodynamics  and  molecular  dynamics  investigation  of  the  conversion  of  stacking  fault  tetrahedra  to  helium  filled  bubbles  under  dual  (Kr,  He)-ion  irradiated  copper.  We  hypothesized  a  previously  unreported  mechanism  for  removal  of  these  stacking  faults  in  irradiated  copper,  that  helium  atoms  migrate  into  the  stacking  fault  pushing  the  native  atoms  to  one  side  to  aggregate  vacancies  together  then  reside  in  these  vacancies  to  form  bubbles.  This  mechanism  was  confirmed  by  molecular  dynamics  simulations.The  last  investigation  focused  on  understanding  the  growth  of  Au  interface  layers  around  vertically  aligned  NiO  nanoscale  pillars  embedded  in  TiN  thin  films,  grown  on  top  of  Au  pillars  embedded  in  TiN  layer.  The  same  thin  film  configuration  also  included  the  formation  of  Ni  agglomerates  in  the  Au  pillars  in  the  lower  layer.  A  thermodynamic  investigation  of  various  morphology  and  configurations  confirmed  that  interdiffusion  of  Au  and  Ni  is  energetically  favorable,  which  interprets  the  observed  film  morphology.  The  findings  of  this  study  are  vital  for  understanding  the  formation  mechanisms  of  complex  vertically  aligned  nanocomposites  (VANs)  and  future  designs  of  new  three-phase  VAN  structures  with  complex  morphologies.
■590    ▼aSchool  code:  0183.
■650  4▼aTin.
■650  4▼aThermodynamics.
■650  4▼aNanocomposites.
■650  4▼aBubbles.
■650  4▼aHigh  temperature.
■650  4▼aCopper.
■650  4▼aPoint  defects.
■650  4▼aEnergy.
■650  4▼aHelium.
■650  4▼aThin  films.
■650  4▼aRadiation.
■650  4▼aEmbryos.
■650  4▼aSolid  solutions.
■650  4▼aNuclear  reactors.
■650  4▼aTemperature  effects.
■650  4▼aPhase  transitions.
■650  4▼aKinetics.
■650  4▼aAtomic  physics.
■650  4▼aCondensed  matter  physics.
■650  4▼aHigh  temperature  physics.
■650  4▼aMaterials  science.
■650  4▼aNanotechnology.
■650  4▼aNuclear  engineering.
■690    ▼a0791
■690    ▼a0348
■690    ▼a0748
■690    ▼a0611
■690    ▼a0597
■690    ▼a0794
■690    ▼a0652
■690    ▼a0552
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164299▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0033876 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치