본문

서브메뉴

Design Technology Co-optimization of Energy-Efficient Digital Logic Using Carbon Nanotubes.
Design Technology Co-optimization of Energy-Efficient Digital Logic Using Carbon Nanotubes.

상세정보

자료유형  
 학위논문
Control Number  
0017161493
International Standard Book Number  
9798382232478
Dewey Decimal Classification Number  
620.11
Main Entry-Personal Name  
Carlo Gilardi.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
136 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Subhasish Mitra.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Carbon Nanotube field-effect transistors (FETs) are promising candidates for high-speed and low- energy digital logic, Carbon Nanotube FETs have been integrated within multiple industrial fabrication facilities at mature technology nodes (e.g., 90/130nm on 200mm silicon wafers). However, understanding Carbon Nanotube FET energy and delay benefits at extremely scaled nodes (e.g., beyond 2nm) is difficult due to several reasons:1. Carbon Nanotube FETs have distinct characteristics material properties and fabrication techniques versus silicon FETs, that directly impact digital logic energy and delay.2. Carbon Nanotube FET energy efficiency analysis must include Carbon Nanotube FET mini- mum leakage current.3. Carbon Nanotube FET digital logic energy and delay exhibit numerous trade-offs, far beyond those for silicon FETs.I address these challenges through new physics-based models using physically meaningful parameters, new Carbon Nanotube FET doping and layout design techniques, and extensive Design Technology Co-Optimization.To illustrate new physics-based models, I present the extended scale length theory. It captures the differences between Carbon Nanotube FET and silicon FET electrostatics that are crucial for energy and delay estimation. The extended scale length theory is also used as a mathematical framework for the development of a leakage model that includes the leakage mechanisms relevant for Carbon Nanotube FETs at extremely scaled nodes (e.g., inelastic band-to-band tunneling). The leakage model is used to quantify Carbon Nanotube FET minimum leakage current within 3x vs. experimentally calibrated Non-Equilibrium Green's Function (NEGF) solvers. In contrast, prior models that do not include all the relevant leakage mechanisms can underestimate Carbon Nanotube FET minimum leakage current by a factor of 105.Understanding Carbon Nanotube FET digital logic energy and delay trade-offs requires extensive Design Technology Co-Optimization simulations across many design and technology parameters. My new physics-based models enable fast Design Technology Co-Optimization: over 350,000 simulations in a few days vs. several months using existing Technology CAD simulators. Such extensive Design Technology Co-Optimization helps derive Carbon Nanotube FET design and technology parameters with up to 7x projected Energy-Delay Product (EDP) benefits vs. silicon FETs at the 2nm technology node. These Design Technology Co-Optimization simulations also include a new Carbon Nanotube FET extension doping technique based on the concept of a barrier booster.A new logic layout technique called Omni 3D exploits Carbon Nanotube FET low-temperature fabrication to further enable up to 1.9x additional projected EDP benefits. Several of my thesis contributions extend beyond Carbon Nanotube FETs, e.g., to FETs based on two-dimensional materials.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Carbon Nanotube field-effect transistors
Index Term-Uncontrolled  
Fabrication techniques
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657717

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161493
■00520250211151404
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382232478
■035    ▼a(MiAaPQ)AAI31255797
■035    ▼a(MiAaPQ)jq719cs3351
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.11
■1001  ▼aCarlo  Gilardi.
■24510▼aDesign  Technology  Co-optimization  of  Energy-Efficient  Digital  Logic  Using  Carbon  Nanotubes.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a136  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Subhasish  Mitra.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aCarbon  Nanotube  field-effect  transistors  (FETs)  are  promising  candidates  for  high-speed  and  low-  energy  digital  logic,  Carbon  Nanotube  FETs  have  been  integrated  within  multiple  industrial  fabrication  facilities  at  mature  technology  nodes  (e.g.,  90/130nm  on  200mm  silicon  wafers).  However,  understanding  Carbon  Nanotube  FET  energy  and  delay  benefits  at  extremely  scaled  nodes  (e.g.,  beyond  2nm)  is  difficult  due  to  several  reasons:1.  Carbon  Nanotube  FETs  have  distinct  characteristics  material  properties  and  fabrication  techniques  versus  silicon  FETs,  that  directly  impact  digital  logic  energy  and  delay.2.  Carbon  Nanotube  FET  energy  efficiency  analysis  must  include  Carbon  Nanotube  FET  mini-  mum  leakage  current.3.  Carbon  Nanotube  FET  digital  logic  energy  and  delay  exhibit  numerous  trade-offs,  far  beyond  those  for  silicon  FETs.I  address  these  challenges  through  new  physics-based  models  using  physically  meaningful  parameters,  new  Carbon  Nanotube  FET  doping  and  layout  design  techniques,  and  extensive  Design  Technology  Co-Optimization.To  illustrate  new  physics-based  models,  I  present  the  extended  scale  length  theory.  It  captures  the  differences  between  Carbon  Nanotube  FET  and  silicon  FET  electrostatics  that  are  crucial  for  energy  and  delay  estimation.  The  extended  scale  length  theory  is  also  used  as  a  mathematical  framework  for  the  development  of  a  leakage  model  that  includes  the  leakage  mechanisms  relevant  for  Carbon  Nanotube  FETs  at  extremely  scaled  nodes  (e.g.,  inelastic  band-to-band  tunneling).  The  leakage  model  is  used  to  quantify  Carbon  Nanotube  FET  minimum  leakage  current  within  3x  vs.  experimentally  calibrated  Non-Equilibrium  Green's  Function  (NEGF)  solvers.  In  contrast,  prior  models  that  do  not  include  all  the  relevant  leakage  mechanisms  can  underestimate  Carbon  Nanotube  FET  minimum  leakage  current  by  a  factor  of  105.Understanding  Carbon  Nanotube  FET  digital  logic  energy  and  delay  trade-offs  requires  extensive  Design  Technology  Co-Optimization  simulations  across  many  design  and  technology  parameters.  My  new  physics-based  models  enable  fast  Design  Technology  Co-Optimization:  over  350,000  simulations  in  a  few  days  vs.  several  months  using  existing  Technology  CAD  simulators.  Such  extensive  Design  Technology  Co-Optimization  helps  derive  Carbon  Nanotube  FET  design  and  technology  parameters  with  up  to  7x  projected  Energy-Delay  Product  (EDP)  benefits  vs.  silicon  FETs  at  the  2nm  technology  node.  These  Design  Technology  Co-Optimization  simulations  also  include  a  new  Carbon  Nanotube  FET  extension  doping  technique  based  on  the  concept  of  a  barrier  booster.A  new  logic  layout  technique  called  Omni  3D  exploits  Carbon  Nanotube  FET  low-temperature  fabrication  to  further  enable  up  to  1.9x  additional  projected  EDP  benefits.  Several  of  my  thesis  contributions  extend  beyond  Carbon  Nanotube  FETs,  e.g.,  to  FETs  based  on  two-dimensional  materials.
■590    ▼aSchool  code:  0212.
■650  4▼aMaterials  science.
■650  4▼aEnergy.
■650  4▼aElectrical  engineering.
■653    ▼aCarbon  Nanotube  field-effect  transistors
■653    ▼aFabrication  techniques
■690    ▼a0544
■690    ▼a0794
■690    ▼a0791
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161493▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0033935 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치