본문

서브메뉴

Innovations for Improved Chemical Imaging and Optical Manipulation in Biological Systems.
Innovations for Improved Chemical Imaging and Optical Manipulation in Biological Systems.

상세정보

자료유형  
 학위논문
Control Number  
0017161526
International Standard Book Number  
9798342104531
Dewey Decimal Classification Number  
535
Main Entry-Personal Name  
Clark, Matthew Graham.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
127 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Zhang, Chi.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약Chemical imaging is a ubiquitous approach to mapping out the complex and dynamic biochemical landscapes of living systems. Here, chemically-specific optical microscopy allows for reaction specific monitoring at sub-cellular levels of resolution. However, the ability to monitor chemical reactions only gives the analyst a passive view of cellular activities. To better understand these processes, it is important to develop new methods for controlling chemical reactions. Compared to conventional methods, optical methods for chemical manipulation provide unprecedented spatial and temporal control and can be integrated into the same imaging platform. In this work, we demonstrate the development of a novel integrated imaging and opto-control platform for highly chemically specific imaging and for spatial and temporally specific laser manipulation.The design of the imaging platform uses nonlinear optical techniques such as coherent Raman scattering and multiphoton excitation fluorescence for maximizing chemical selection criteria for potential reaction monitoring. The key issue with the integration of these techniques into a single platform is the excitation scheme, typically picosecond lasers are used for Raman and femtosecond for fluorescence. To combat this, we developed a pulse-picking device that can tune the peak power of the excitation lasers while maintaining low average powers on sample. This minimizes phototoxicity and generates higher nonlinear optical signals. This device allows for a seamless integration of imaging techniques and allows for faster dwell times to be used during laser scanning.We further develop the imaging platform by implementing optical control lasers into the microscopy setup. Using the signals generated during laser scanning, we compare the voltage readout from the detector and compare it with an existing threshold we set in a lab-designed comparator circuit. If the voltage set is greater than the threshold, we use a voltage output from the circuit to turn the control lasers on .This allows us to create a feedback loop that makes realtime decision on when and where to direct the laser. We demonstrate further capability of decision making through bandpass selection and digital logic functions which can be designed at the user's choice. This approach gives a generic approach to chemical monitoring and optical control at time and length scales appropriate for making meaningful biochemical measurements in dynamic systems.
Subject Added Entry-Topical Term  
Spectrum analysis.
Subject Added Entry-Topical Term  
Lasers.
Subject Added Entry-Topical Term  
Power.
Subject Added Entry-Topical Term  
Chemical reactions.
Subject Added Entry-Topical Term  
Microscopy.
Subject Added Entry-Topical Term  
Labeling.
Subject Added Entry-Topical Term  
Polymethyl methacrylate.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Lipids.
Subject Added Entry-Topical Term  
Transistors.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Atoms & subatomic particles.
Subject Added Entry-Topical Term  
Vibration.
Subject Added Entry-Topical Term  
Analytical chemistry.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Polymer chemistry.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657706

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161526
■00520250211151408
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342104531
■035    ▼a(MiAaPQ)AAI31285281
■035    ▼a(MiAaPQ)25395811
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a535
■1001  ▼aClark,  Matthew  Graham.
■24510▼aInnovations  for  Improved  Chemical  Imaging  and  Optical  Manipulation  in  Biological  Systems.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a127  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Zhang,  Chi.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aChemical  imaging  is  a  ubiquitous  approach  to  mapping  out  the  complex  and  dynamic  biochemical  landscapes  of  living  systems.  Here,  chemically-specific  optical  microscopy  allows  for  reaction  specific  monitoring  at  sub-cellular  levels  of  resolution.  However,  the  ability  to  monitor  chemical  reactions  only  gives  the  analyst  a  passive  view  of  cellular  activities.  To  better  understand  these  processes,  it  is  important  to  develop  new  methods  for  controlling  chemical  reactions.  Compared  to  conventional  methods,  optical  methods  for  chemical  manipulation  provide  unprecedented  spatial  and  temporal  control  and  can  be  integrated  into  the  same  imaging  platform.  In  this  work,  we  demonstrate  the  development  of  a  novel  integrated  imaging  and  opto-control  platform  for  highly  chemically  specific  imaging  and  for  spatial  and  temporally  specific  laser  manipulation.The  design  of  the  imaging  platform  uses  nonlinear  optical  techniques  such  as  coherent  Raman  scattering  and  multiphoton  excitation  fluorescence  for  maximizing  chemical  selection  criteria  for  potential  reaction  monitoring.  The  key  issue  with  the  integration  of  these  techniques  into  a  single  platform  is  the  excitation  scheme,  typically  picosecond  lasers  are  used  for  Raman  and  femtosecond  for  fluorescence.  To  combat  this,  we  developed  a  pulse-picking  device  that  can  tune  the  peak  power  of  the  excitation  lasers  while  maintaining  low  average  powers  on  sample.  This  minimizes  phototoxicity  and  generates  higher  nonlinear  optical  signals.  This  device  allows  for  a  seamless  integration  of  imaging  techniques  and  allows  for  faster  dwell  times  to  be  used  during  laser  scanning.We  further  develop  the  imaging  platform  by  implementing  optical  control  lasers  into  the  microscopy  setup.  Using  the  signals  generated  during  laser  scanning,  we  compare  the  voltage  readout  from  the  detector  and  compare  it  with  an  existing  threshold  we  set  in  a  lab-designed  comparator  circuit.  If  the  voltage  set  is  greater  than  the  threshold,  we  use  a  voltage  output  from  the  circuit  to  turn  the  control  lasers  on  .This  allows  us  to  create  a  feedback  loop  that  makes  realtime  decision  on  when  and  where  to  direct  the  laser.  We  demonstrate  further  capability  of  decision  making  through  bandpass  selection  and  digital  logic  functions  which  can  be  designed  at  the  user's  choice.  This  approach  gives  a  generic  approach  to  chemical  monitoring  and  optical  control  at  time  and  length  scales  appropriate  for  making  meaningful  biochemical  measurements  in  dynamic  systems.
■590    ▼aSchool  code:  0183.
■650  4▼aSpectrum  analysis.
■650  4▼aLasers.
■650  4▼aPower.
■650  4▼aChemical  reactions.
■650  4▼aMicroscopy.
■650  4▼aLabeling.
■650  4▼aPolymethyl  methacrylate.
■650  4▼aDesign.
■650  4▼aEnergy.
■650  4▼aLipids.
■650  4▼aTransistors.
■650  4▼aOptics.
■650  4▼aAtoms  &  subatomic  particles.
■650  4▼aVibration.
■650  4▼aAnalytical  chemistry.
■650  4▼aAtomic  physics.
■650  4▼aPolymer  chemistry.
■690    ▼a0791
■690    ▼a0389
■690    ▼a0752
■690    ▼a0486
■690    ▼a0748
■690    ▼a0495
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161526▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0033924 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치