본문

서브메뉴

Learning Domain-Specific Cameras.
Learning Domain-Specific Cameras.

상세정보

자료유형  
 학위논문
Control Number  
0017162990
International Standard Book Number  
9798384426554
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Nguyen, Cindy My Anh.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
119 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Wetzstein, Gordon.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Many autonomous systems rely on images taken using off-the-shelf cameras. These images are passed to a domain-specific algorithm that provides high-level predictions, such as classification or segmentation. However, general digital cameras are optimized for aesthetics and may not necessarily provide the most useful information for downstream tasks. Additionally, these autonomous pipelines often have narrow use cases, performing only one or a few tasks with the captured images. We explore how to extract the most performance in such cases by learning end-to-end domain-specific camera pipelines.To learn a domain-specific camera, we can learn the parameters of each stage of the pipeline, such as the optics, sensors, and software. We built and evaluated several domain-specific camera systems that demonstrate the benefits of this paradigm. First, we demonstrate how optimizing both lens design and software can lead to better performance on monocular depth estimation. Next, we describe a system in which we jointly optimize the sensor and a reconstruction network to perform single-snapshot motion deblurring. Finally, we focus on optimizing the algorithmic part of a pipeline to bring robust performance to low-light text recognition using diffusion models.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Optics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657691

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162990
■00520250211152121
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384426554
■035    ▼a(MiAaPQ)AAI31460389
■035    ▼a(MiAaPQ)Stanfordzm136ny2176
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aNguyen,  Cindy  My  Anh.
■24510▼aLearning  Domain-Specific  Cameras.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a119  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Wetzstein,  Gordon.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aMany  autonomous  systems  rely  on  images  taken  using  off-the-shelf  cameras.  These  images  are  passed  to  a  domain-specific  algorithm  that  provides  high-level  predictions,  such  as  classification  or  segmentation.  However,  general  digital  cameras  are  optimized  for  aesthetics  and  may  not  necessarily  provide  the  most  useful  information  for  downstream  tasks.  Additionally,  these  autonomous  pipelines  often  have  narrow  use  cases,  performing  only  one  or  a  few  tasks  with  the  captured  images.  We  explore  how  to  extract  the  most  performance  in  such  cases  by  learning  end-to-end  domain-specific  camera  pipelines.To  learn  a  domain-specific  camera,  we  can  learn  the  parameters  of  each  stage  of  the  pipeline,  such  as  the  optics,  sensors,  and  software.  We  built  and  evaluated  several  domain-specific  camera  systems  that  demonstrate  the  benefits  of  this  paradigm.  First,  we  demonstrate  how  optimizing  both  lens  design  and  software  can  lead  to  better  performance  on  monocular  depth  estimation.  Next,  we  describe  a  system  in  which  we  jointly  optimize  the  sensor  and  a  reconstruction  network  to  perform  single-snapshot  motion  deblurring.  Finally,  we  focus  on  optimizing  the  algorithmic  part  of  a  pipeline  to  bring  robust  performance  to  low-light  text  recognition  using  diffusion  models.
■590    ▼aSchool  code:  0212.
■650  4▼aComputer  science.
■650  4▼aOptics.
■690    ▼a0752
■690    ▼a0984
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162990▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0033909 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치