본문

서브메뉴

The Mathematics of Facial Recognition: Statistics Teachers' Adaptations to a Machine Learning Curriculum.
The Mathematics of Facial Recognition: Statistics Teachers' Adaptations to a Machine Learning Curriculum.

상세정보

자료유형  
 학위논문
Control Number  
0017164284
International Standard Book Number  
9798342137614
Dewey Decimal Classification Number  
370
Main Entry-Personal Name  
Delaney, Victoria Leah.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
440 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Borko, Hilda.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Today's students are surrounded by machine learning (ML)-powered tools. Yet, few understand how they work. While there are numerous opportunities for students to learn about ML in informal settings (e.g., Alvarez et al., 2022; Druga et al., 2022) and online (e.g., code.org, Scratch), there are far fewer opportunities in the United States for students to learn about how ML works while they are in school. Although curriculum and standards frameworks have been developed to help educators navigate machine learning education, it is not yet known if teachers can or want to enact ML curriculum in their practice.As a former classroom teacher and ML graduate student, I saw interdisciplinary commonalities between machine learning and statistics, the subject I used to teach. In response, I co-designed a one-unit curriculum, The Math of Facial Recognition (FaceID),with a practicing high school teacher. We built the curriculum with three goals: (1) that it would aim to help teachers and students build high-level intuitions about ML, (2) that it would draw from teachers' and students' prior statistics knowledge, and (3) that it would bridge statistics and ML concepts by exploring facial recognition in smartphones, a ML application that students likely use everyday. We built custom web applications, termed "widgets," with the purpose of enabling students to explore and test hypotheses about facial recognition using images of themselves. Finally, we designed the curriculum with features that intentionally encouraged statistics teachers to adapt segments and activities of lessons for their students.That teachers would adapt a curriculum for instruction is not surprising; in fact, it is an expected component of good teaching. Drawing from studies in curriculum theory, I argue that teachers' adaptations of curriculum - from written documents, to teacher-intended curricula, to jointly-enacted curricula between teachers and students - are supported by their pedagogical design capacity (PDC) (Brown, 2009). In the context of my study, PDC refers to statistics teachers' diverse resources as designers of instruction: their statistics pedagogical content knowledge (PCK), subject-matter knowledge of statistics, students PCK, general knowledge of pedagogy, and their goals. Teachers' goals may or may not align with goals stated in the written curriculum, which can influence their adaptations. Two key goals of this work are to investigate how teachers' PDC supported their ability to adapt FaceID,and to identify their rationales for making adaptations.To implement my study, I partnered with three experienced high school statistics teachers who agreed to enact FaceID in their classrooms. I observed each teacher's enactment, noting where and how teachers made adaptations. I interviewed each teacher before and after they taught the curriculum to learn about their prior knowledge, experiences, goals, and post-implementation, the nature of their adaptations. I also asked each teacher to identify their adaptations separately in a reflection document, because I was curious to understand how teachers defined an "adaptation" in their own practice. After concluding my field work, I analyzed the data to determine what adaptations teachers made to FaceIDand their rationales for adapting segments and activities, taking note of instances where teachers interpreted their adaptations differently than the researchers.
Subject Added Entry-Topical Term  
Pedagogy.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Writing.
Subject Added Entry-Topical Term  
Adaptation.
Subject Added Entry-Topical Term  
Educational technology.
Subject Added Entry-Topical Term  
Core curriculum.
Subject Added Entry-Topical Term  
Teachers.
Subject Added Entry-Topical Term  
Classrooms.
Subject Added Entry-Topical Term  
Schools.
Subject Added Entry-Topical Term  
Science education.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Digital technology.
Subject Added Entry-Topical Term  
Curriculum development.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657672

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164284
■00520250211152943
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342137614
■035    ▼a(MiAaPQ)AAI31591776
■035    ▼a(MiAaPQ)Stanfordgf326jc6533
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a370
■1001  ▼aDelaney,  Victoria  Leah.
■24510▼aThe  Mathematics  of  Facial  Recognition:  Statistics  Teachers'  Adaptations  to  a  Machine  Learning  Curriculum.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a440  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Borko,  Hilda.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aToday's  students  are  surrounded  by  machine  learning  (ML)-powered  tools.  Yet,  few  understand  how  they  work.  While  there  are  numerous  opportunities  for  students  to  learn  about  ML  in  informal  settings  (e.g.,  Alvarez  et  al.,  2022;  Druga  et  al.,  2022)  and  online  (e.g.,  code.org,  Scratch),  there  are  far  fewer  opportunities  in  the  United  States  for  students  to  learn  about  how  ML  works  while  they  are  in  school.  Although  curriculum  and  standards  frameworks  have  been  developed  to  help  educators  navigate  machine  learning  education,  it  is  not  yet  known  if  teachers  can  or  want  to  enact  ML  curriculum  in  their  practice.As  a  former  classroom  teacher  and  ML  graduate  student,  I  saw  interdisciplinary  commonalities  between  machine  learning  and  statistics,  the  subject  I  used  to  teach.  In  response,  I  co-designed  a  one-unit  curriculum,  The  Math  of  Facial  Recognition  (FaceID),with  a  practicing  high  school  teacher.  We  built  the  curriculum  with  three  goals:  (1)  that  it  would  aim  to  help  teachers  and  students  build  high-level  intuitions  about  ML,  (2)  that  it  would  draw  from  teachers'  and  students'  prior  statistics  knowledge,  and  (3)  that  it  would  bridge  statistics  and  ML  concepts  by  exploring  facial  recognition  in  smartphones,  a  ML  application  that  students  likely  use  everyday.  We  built  custom  web  applications,  termed  "widgets,"  with  the  purpose  of  enabling  students  to  explore  and  test  hypotheses  about  facial  recognition  using  images  of  themselves.  Finally,  we  designed  the  curriculum  with  features  that  intentionally  encouraged  statistics  teachers  to  adapt  segments  and  activities  of  lessons  for  their  students.That  teachers  would  adapt  a  curriculum  for  instruction  is  not  surprising;  in  fact,  it  is  an  expected  component  of  good  teaching.  Drawing  from  studies  in  curriculum  theory,  I  argue  that  teachers'  adaptations  of  curriculum  -  from  written  documents,  to  teacher-intended  curricula,  to  jointly-enacted  curricula  between  teachers  and  students  -  are  supported  by  their  pedagogical  design  capacity  (PDC)  (Brown,  2009).  In  the  context  of  my  study,  PDC  refers  to  statistics  teachers'  diverse  resources  as  designers  of  instruction:  their  statistics  pedagogical  content  knowledge  (PCK),  subject-matter  knowledge  of  statistics,  students  PCK,  general  knowledge  of  pedagogy,  and  their  goals.  Teachers'  goals  may  or  may  not  align  with  goals  stated  in  the  written  curriculum,  which  can  influence  their  adaptations.  Two  key  goals  of  this  work  are  to  investigate  how  teachers'  PDC  supported  their  ability  to  adapt  FaceID,and  to  identify  their  rationales  for  making  adaptations.To  implement  my  study,  I  partnered  with  three  experienced  high  school  statistics  teachers  who  agreed  to  enact  FaceID  in  their  classrooms.  I  observed  each  teacher's  enactment,  noting  where  and  how  teachers  made  adaptations.  I  interviewed  each  teacher  before  and  after  they  taught  the  curriculum  to  learn  about  their  prior  knowledge,  experiences,  goals,  and  post-implementation,  the  nature  of  their  adaptations.  I  also  asked  each  teacher  to  identify  their  adaptations  separately  in  a  reflection  document,  because  I  was  curious  to  understand  how  teachers  defined  an  "adaptation"  in  their  own  practice.  After  concluding  my  field  work,  I  analyzed  the  data  to  determine  what  adaptations  teachers  made  to  FaceIDand  their  rationales  for  adapting  segments  and  activities,  taking  note  of  instances  where  teachers  interpreted  their  adaptations  differently  than  the  researchers.
■590    ▼aSchool  code:  0212.
■650  4▼aPedagogy.
■650  4▼aComputer  science.
■650  4▼aWriting.
■650  4▼aAdaptation.
■650  4▼aEducational  technology.
■650  4▼aCore  curriculum.
■650  4▼aTeachers.
■650  4▼aClassrooms.
■650  4▼aSchools.
■650  4▼aScience  education.
■650  4▼aDesign.
■650  4▼aDigital  technology.
■650  4▼aCurriculum  development.
■690    ▼a0389
■690    ▼a0984
■690    ▼a0800
■690    ▼a0456
■690    ▼a0710
■690    ▼a0714
■690    ▼a0727
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164284▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0033890 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치