본문

서브메뉴

Dynamics of Averaging Systems: Convergence and Cyclical Trends.
Dynamics of Averaging Systems: Convergence and Cyclical Trends.

상세정보

자료유형  
 학위논문
Control Number  
0017160854
International Standard Book Number  
9798382808697
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Karntikoon, Kritkorn.
Publication, Distribution, etc. (Imprint  
[S.l.] : Princeton University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
184 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Chazelle, Bernard.
Dissertation Note  
Thesis (Ph.D.)--Princeton University, 2024.
Summary, Etc.  
요약Averaging dynamics drives countless processes in biology, social science, physics, and engineering. Notable examples include opinion dynamics, bird flocking, and synchronization processes. These processes involve agents interacting across a dynamic network by averaging their state variables with those of their neighbors. The dynamics of averaging systems therefore depend on the structure of the underlying network sequences. Under mild conditions, such systems are known to converge to fixed-point attractors but are hard to analyze because of the time-varying nature of networks. The s-energy, a generating function over inter-agent distances, has emerged as a powerful tool to deal with this issue.In this thesis, we refine the analysis of the s-energy by highlighting the impact of network connectivity. This allows us to address an intriguing exponential gap in the convergence rate of averaging systems. We also apply this new s-energy bound to resolve open questions in several areas including bird flocking, where we establish sufficient conditions for the first polynomial bound in bird flocking convergence. Additionally, we investigate the emergence of cyclical trends in opinion dynamics. Augmenting the model with a separation rule reveals that the systems either converge to a nonconsensual equilibrium or are attracted to periodic or quasi-periodic orbits. Our analysis includes exploring geometric properties such as dimensionality, periodicity, and conditions for various behaviors.Later, we shift our focus from averaging systems to explore compelling examples of dynamic multi-agent systems, such as epidemiological and traffic network models. Furthermore, our emphasis is not on convergence rates or dynamic evolution but rather on practical applications: approximating the relevant values within these systems.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Averaging systems
Index Term-Uncontrolled  
Convergence rate
Index Term-Uncontrolled  
Cyclical trends
Index Term-Uncontrolled  
s-energy
Index Term-Uncontrolled  
Synchronization processes
Added Entry-Corporate Name  
Princeton University Computer Science
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657656

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160854
■00520250211151126
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382808697
■035    ▼a(MiAaPQ)AAI31147093
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aKarntikoon,  Kritkorn.▼0(orcid)0000-0002-6398-3097
■24510▼aDynamics  of  Averaging  Systems:  Convergence  and  Cyclical  Trends.
■260    ▼a[S.l.]▼bPrinceton  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a184  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Chazelle,  Bernard.
■5021  ▼aThesis  (Ph.D.)--Princeton  University,  2024.
■520    ▼aAveraging  dynamics  drives  countless  processes  in  biology,  social  science,  physics,  and  engineering.  Notable  examples  include  opinion  dynamics,  bird  flocking,  and  synchronization  processes.  These  processes  involve  agents  interacting  across  a  dynamic  network  by  averaging  their  state  variables  with  those  of  their  neighbors.  The  dynamics  of  averaging  systems  therefore  depend  on  the  structure  of  the  underlying  network  sequences.  Under  mild  conditions,  such  systems  are  known  to  converge  to  fixed-point  attractors  but  are  hard  to  analyze  because  of  the  time-varying  nature  of  networks.  The  s-energy,  a  generating  function  over  inter-agent  distances,  has  emerged  as  a  powerful  tool  to  deal  with  this  issue.In  this  thesis,  we  refine  the  analysis  of  the  s-energy  by  highlighting  the  impact  of  network  connectivity.  This  allows  us  to  address  an  intriguing  exponential  gap  in  the  convergence  rate  of  averaging  systems.  We  also  apply  this  new  s-energy  bound  to  resolve  open  questions  in  several  areas  including  bird  flocking,  where  we  establish  sufficient  conditions  for  the  first  polynomial  bound  in  bird  flocking  convergence.  Additionally,  we  investigate  the  emergence  of  cyclical  trends  in  opinion  dynamics.  Augmenting  the  model  with  a  separation  rule  reveals  that  the  systems  either  converge  to  a  nonconsensual  equilibrium  or  are  attracted  to  periodic  or  quasi-periodic  orbits.  Our  analysis  includes  exploring  geometric  properties  such  as  dimensionality,  periodicity,  and  conditions  for  various  behaviors.Later,  we  shift  our  focus  from  averaging  systems  to  explore  compelling  examples  of  dynamic  multi-agent  systems,  such  as  epidemiological  and  traffic  network  models.  Furthermore,  our  emphasis  is  not  on  convergence  rates  or  dynamic  evolution  but  rather  on  practical  applications:  approximating  the  relevant  values  within  these  systems.
■590    ▼aSchool  code:  0181.
■650  4▼aComputer  science.
■650  4▼aComputer  engineering.
■650  4▼aInformation  technology.
■653    ▼aAveraging  systems
■653    ▼aConvergence  rate
■653    ▼aCyclical  trends
■653    ▼as-energy
■653    ▼aSynchronization  processes
■690    ▼a0984
■690    ▼a0489
■690    ▼a0464
■71020▼aPrinceton  University▼bComputer  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0181
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160854▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0033837 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치