본문

서브메뉴

Information, Chaos, and Black Holes: Bridging Quantum Entanglement and Holographic Spacetime.
Information, Chaos, and Black Holes: Bridging Quantum Entanglement and Holographic Spacetime.

상세정보

자료유형  
 학위논문
Control Number  
0017162302
International Standard Book Number  
9798342718301
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Wu, Chih-Hung.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Santa Barbara., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
335 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Dong, Xi.
Dissertation Note  
Thesis (Ph.D.)--University of California, Santa Barbara, 2024.
Summary, Etc.  
요약The AdS/CFT correspondence, as a manifestation of the holographic principle, has provided valuable insights while raising more intriguing questions in our pursuit of quantum gravity. In this dissertation, we explore the interconnections between quantum information and quantum chaos in holography, through the lens of entanglement entropy and black holes. We present a series of studies, each contributing a novel perspective or improvement to our understanding of quantum entanglement and gravitational systems.We begin by introducing a new way for extracting the von Neumann entropy from integer n Renyi entropies using a generating function. This method does not rely on direct analytic continuation in n, and we demonstrate its utility through analytical and numerical examples. With the generating function, we establish the expressivity of von Neumann and Renyi entropies in terms of classical and quantum neural networks, show-casing the potential of machine learning in addressing complex problems in quantum information theory.Furthermore, we utilize the Euclidean gravitational path integral to investigate holographic entanglement entropy under bulk renormalization group flow. This study addresses the consistency of the holographic dictionary, ensuring that different bulk descriptions yield the same boundary entanglement entropy, given its fine-grained nature. We generalize the conical expansion method to examine scenarios involving non-zero spin matter fields in tree-level UV extensions, demonstrating that the UV entropy values concur with those flowed to the IR upon going on-shell. Moreover, we find that the entropy functional consistently aligns under imposition of the equations of motion for the matter fields at low energies, surpassing mere entropy value matching.As an incarnation of holographic entanglement entropy, the bulk extremal surface leads to the subregion duality paradigm. By defining the entanglement wedge associated with a boundary subregion, one can naturally extrapolate entanglement wedge reconstruction to define a notion of operator size in the boundary and determine the butterfly velocity that characterizes the growth of local perturbations from certain extremal surfaces. On the other hand, the study of quantum chaos presents a novel bound to holographic theories through a distinct Lorentzian calculation of the butterfly velocity, determined from a localized shockwave on the horizon of a dual black hole. We demonstrate a general agreement between the two pictures in higher-derivative gravity, revealing deep connections between quantum chaos and entanglement wedge reconstruction and sharply constraining the paradigm.Entanglement wedge reconstruction offers a beautiful resolution to the black hole information paradox through the concept of quantum extremal islands. We delve into the dynamics of black hole evaporation within a less understood non-minimal dilaton gravity framework. By identifying the Weyl-invariant terms in the action, which could be attributed to a state-dependent part of the stress tensor, we constructed a one-parameter family of one-loop actions with unique, regular, and physical stress tensors corresponding to quantum states that describe black hole evaporation. We apply the quantum extremal islands prescription to the back-reacted geometry, successfully reproducing the correct Page curve and thereby affirming the unitarity of the evaporation process, which was unattainable without a consistent one-loop theory.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Nuclear physics.
Subject Added Entry-Topical Term  
Quantum physics.
Subject Added Entry-Topical Term  
Theoretical physics.
Index Term-Uncontrolled  
Black hole information paradox
Index Term-Uncontrolled  
Entanglement wedge reconstruction
Index Term-Uncontrolled  
Holography
Index Term-Uncontrolled  
Quantum entanglement
Index Term-Uncontrolled  
Quantum gravity
Added Entry-Corporate Name  
University of California, Santa Barbara Physics
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657605

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162302
■00520250211151957
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342718301
■035    ▼a(MiAaPQ)AAI31329197
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aWu,  Chih-Hung.
■24510▼aInformation,  Chaos,  and  Black  Holes:  Bridging  Quantum  Entanglement  and  Holographic  Spacetime.
■260    ▼a[S.l.]▼bUniversity  of  California,  Santa  Barbara.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a335  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Dong,  Xi.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Santa  Barbara,  2024.
■520    ▼aThe  AdS/CFT  correspondence,  as  a  manifestation  of  the  holographic  principle,  has  provided  valuable  insights  while  raising  more  intriguing  questions  in  our  pursuit  of  quantum  gravity.  In  this  dissertation,  we  explore  the  interconnections  between  quantum  information  and  quantum  chaos  in  holography,  through  the  lens  of  entanglement  entropy  and  black  holes.  We  present  a  series  of  studies,  each  contributing  a  novel  perspective  or  improvement  to  our  understanding  of  quantum  entanglement  and  gravitational  systems.We  begin  by  introducing  a  new  way  for  extracting  the  von  Neumann  entropy  from  integer  n  Renyi  entropies  using  a  generating  function.  This  method  does  not  rely  on  direct  analytic  continuation  in  n,  and  we  demonstrate  its  utility  through  analytical  and  numerical  examples.  With  the  generating  function,  we  establish  the  expressivity  of  von  Neumann  and  Renyi  entropies  in  terms  of  classical  and  quantum  neural  networks,  show-casing  the  potential  of  machine  learning  in  addressing  complex  problems  in  quantum  information  theory.Furthermore,  we  utilize  the  Euclidean  gravitational  path  integral  to  investigate  holographic  entanglement  entropy  under  bulk  renormalization  group  flow.  This  study  addresses  the  consistency  of  the  holographic  dictionary,  ensuring  that  different  bulk  descriptions  yield  the  same  boundary  entanglement  entropy,  given  its  fine-grained  nature.  We  generalize  the  conical  expansion  method  to  examine  scenarios  involving  non-zero  spin  matter  fields  in  tree-level  UV  extensions,  demonstrating  that  the  UV  entropy  values  concur  with  those  flowed  to  the  IR  upon  going  on-shell.  Moreover,  we  find  that  the  entropy  functional  consistently  aligns  under  imposition  of  the  equations  of  motion  for  the  matter  fields  at  low  energies,  surpassing  mere  entropy  value  matching.As  an  incarnation  of  holographic  entanglement  entropy,  the  bulk  extremal  surface  leads  to  the  subregion  duality  paradigm.  By  defining  the  entanglement  wedge  associated  with  a  boundary  subregion,  one  can  naturally  extrapolate  entanglement  wedge  reconstruction  to  define  a  notion  of  operator  size  in  the  boundary  and  determine  the  butterfly  velocity  that  characterizes  the  growth  of  local  perturbations  from  certain  extremal  surfaces.  On  the  other  hand,  the  study  of  quantum  chaos  presents  a  novel  bound  to  holographic  theories  through  a  distinct  Lorentzian  calculation  of  the  butterfly  velocity,  determined  from  a  localized  shockwave  on  the  horizon  of  a  dual  black  hole.  We  demonstrate  a  general  agreement  between  the  two  pictures  in  higher-derivative  gravity,  revealing  deep  connections  between  quantum  chaos  and  entanglement  wedge  reconstruction  and  sharply  constraining  the  paradigm.Entanglement  wedge  reconstruction  offers  a  beautiful  resolution  to  the  black  hole  information  paradox  through  the  concept  of  quantum  extremal  islands.  We  delve  into  the  dynamics  of  black  hole  evaporation  within  a  less  understood  non-minimal  dilaton  gravity  framework.  By  identifying  the  Weyl-invariant  terms  in  the  action,  which  could  be  attributed  to  a  state-dependent  part  of  the  stress  tensor,  we  constructed  a  one-parameter  family  of  one-loop  actions  with  unique,  regular,  and  physical  stress  tensors  corresponding  to  quantum  states  that  describe  black  hole  evaporation.  We  apply  the  quantum  extremal  islands  prescription  to  the  back-reacted  geometry,  successfully  reproducing  the  correct  Page  curve  and  thereby  affirming  the  unitarity  of  the  evaporation  process,  which  was  unattainable  without  a  consistent  one-loop  theory.
■590    ▼aSchool  code:  0035.
■650  4▼aPhysics.
■650  4▼aNuclear  physics.
■650  4▼aQuantum  physics.
■650  4▼aTheoretical  physics.
■653    ▼aBlack  hole  information  paradox
■653    ▼aEntanglement  wedge  reconstruction
■653    ▼aHolography
■653    ▼aQuantum  entanglement
■653    ▼aQuantum  gravity
■690    ▼a0605
■690    ▼a0753
■690    ▼a0599
■690    ▼a0756
■71020▼aUniversity  of  California,  Santa  Barbara▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0035
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162302▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    ค้นหาข้อมูลรายละเอียด

    • จองห้องพัก
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • โฟลเดอร์ของฉัน
    วัสดุ
    Reg No. Call No. ตำแหน่งที่ตั้ง สถานะ ยืมข้อมูล
    TQ0033823 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * จองมีอยู่ในหนังสือยืม เพื่อให้การสำรองที่นั่งคลิกที่ปุ่มจองห้องพัก

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치