본문

서브메뉴

Human-Centric Perception With Limited Supervision: Improving Generalizability in the Wild.
Human-Centric Perception With Limited Supervision: Improving Generalizability in the Wild.

상세정보

자료유형  
 학위논문
Control Number  
0017163731
International Standard Book Number  
9798342114684
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Weng, Zhenzhen.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
214 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Yeung, Serena.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Human-centric perception has numerous valuable applications in self-driving vehicles, AI-assisted healthcare, and content creation, where understanding human poses and behaviors enhances planning, intervention strategies, and visual e↵ects. However, challenges such as the high cost of data capture and annotation limit the availability of training data for 3D applications. This thesis addresses these challenges through various methods leveraging priors and pre-trained models to improve perception models with limited supervision.The first part of the thesis explores leveraging priors to enhance perception models. It introduces a method using common room layout knowledge to refine indoor human and scene reconstructions and a method that learns human body priors from unannotated LiDAR sensor data, reducing the need for annotated training data. This is particularly beneficial in self-driving, where large sensor data captures are common, but 3D annotation is complex.The second part presents a study that bootstraps synthetic data for training perception models using human pose priors. Incorporating diverse synthetic data results in more robust models that perform well in challenging scenarios. This method, applied to caregiver-child interaction videos, extracts human behavior aspects to facilitate behavioral and developmental research, enhancing perception models and providing insights into developmental processes.The third part discusses using pre-trained generative models to create realistic synthetic human training data. It introduces methods employing pre-trained generative and di↵usion models to enhance perception models, leveraging powerful 2D models to reduce dependence on high-quality 3D training data.Overall, this thesis demonstrates that data-driven methods for understanding human form and behavior significantly improve our ability to perceive and generate realistic human representations with high fidelity and accuracy.
Subject Added Entry-Topical Term  
Adaptation.
Subject Added Entry-Topical Term  
Caregivers.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Applied mathematics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657566

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163731
■00520250211152746
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342114684
■035    ▼a(MiAaPQ)AAI31520294
■035    ▼a(MiAaPQ)Stanfordnk873jd2198
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aWeng,  Zhenzhen.
■24510▼aHuman-Centric  Perception  With  Limited  Supervision:  Improving  Generalizability  in  the  Wild.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a214  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Yeung,  Serena.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aHuman-centric  perception  has  numerous  valuable  applications  in  self-driving  vehicles,  AI-assisted  healthcare,  and  content  creation,  where  understanding  human  poses  and  behaviors  enhances  planning,  intervention  strategies,  and  visual  e↵ects.  However,  challenges  such  as  the  high  cost  of  data  capture  and  annotation  limit  the  availability  of  training  data  for  3D  applications.  This  thesis  addresses  these  challenges  through  various  methods  leveraging  priors  and  pre-trained  models  to  improve  perception  models  with  limited  supervision.The  first  part  of  the  thesis  explores  leveraging  priors  to  enhance  perception  models.  It  introduces  a  method  using  common  room  layout  knowledge  to  refine  indoor  human  and  scene  reconstructions  and  a  method  that  learns  human  body  priors  from  unannotated  LiDAR  sensor  data,  reducing  the  need  for  annotated  training  data.  This  is  particularly  beneficial  in  self-driving,  where  large  sensor  data  captures  are  common,  but  3D  annotation  is  complex.The  second  part  presents  a  study  that  bootstraps  synthetic  data  for  training  perception  models  using  human  pose  priors.  Incorporating  diverse  synthetic  data  results  in  more  robust  models  that  perform  well  in  challenging  scenarios.  This  method,  applied  to  caregiver-child  interaction  videos,  extracts  human  behavior  aspects  to  facilitate  behavioral  and  developmental  research,  enhancing  perception  models  and  providing  insights  into  developmental  processes.The  third  part  discusses  using  pre-trained  generative  models  to  create  realistic  synthetic  human  training  data.  It  introduces  methods  employing  pre-trained  generative  and  di↵usion  models  to  enhance  perception  models,  leveraging  powerful  2D  models  to  reduce  dependence  on  high-quality  3D  training  data.Overall,  this  thesis  demonstrates  that  data-driven  methods  for  understanding  human  form  and  behavior  significantly  improve  our  ability  to  perceive  and  generate  realistic  human  representations  with  high  fidelity  and  accuracy.
■590    ▼aSchool  code:  0212.
■650  4▼aAdaptation.
■650  4▼aCaregivers.
■650  4▼aGeometry.
■650  4▼aComputer  engineering.
■650  4▼aApplied  mathematics.
■690    ▼a0464
■690    ▼a0364
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163731▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0033784 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치