본문

서브메뉴

Essays on Bandit Games and Endogenously Missing Data.
Essays on Bandit Games and Endogenously Missing Data.

상세정보

자료유형  
 학위논문
Control Number  
0017165144
International Standard Book Number  
9798346878674
Dewey Decimal Classification Number  
519.3
Main Entry-Personal Name  
Grimme, William James.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2025
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2025
Physical Description  
162 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: A.
General Note  
Advisor: Tebaldi, Pietro.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2025.
Summary, Etc.  
요약I characterize optimal strategies and equilibria in two bandit-type games of strategic information acquisition. The latter game admits a missing data problem, which I develop an estimator to address. I consider a third environment with an additional missing data problem, characterize estimation bias both statistically and empirically, and develop a pair of easily implementable unbiased estimators. In the first chapter, I analyze a two-player, two-armed exponential bandit model in continuous time across several monitoring and disclosure environments, in which breakthroughs are fully informative of the state of the world. In particular, I consider an environment where player actions are observed but the results of experimentation are unobserved, and an environment where both actions and experimentation outcomes are unobserved. In the former environment, I construct a Perfect Bayesian Equilibrium that induces the efficient (cooperative) experimentation path. This equilibrium relies on strategies that deter free-riding by moving to an undesirable, asymmetric experimentation path when the safe arm is played. In the latter environment, I provide conditions on starting beliefs for which it is possible to construct a Perfect Bayesian Equilibrium that induces the efficient experimentation path. This equilibrium requires that players privately, separately experiment and share the results of experimentation at a single point in time. I show how this hybrid Markov approach can be adapted to a general discrete-time setting and provide conditions for which strategies measurable with respect to both the Markov partition and a finite automaton are consistent. In the second chapter, I consider the problem of a rideshare company which makes sequences of take it or leave it offers to drivers for individual trips. When drivers are privately and commonly informed of trip quality, rejected offers are informative about trip quality to the rideshare company. As such, the rideshare company faces a strategic information acquisition problem: offers influence both the current-period payoff and the expectation of future payoffs via posterior beliefs. When unobserved quality is Bernoulli, the value function increases in beliefs over quality, and I characterize the value function and optimal offer sequence using dynamic programming. Moreover, I show that a heuristic n-offer look-ahead sequence converges uniformly to the optimal revenue, and characterize bounds on the revenue gap. For a general bounded distribution of unobserved trip quality, I show that the value function is decreasing after rejections, and define analogous convergent bounds. Among heterogeneous drivers, driver and platform value can be collapsed into a single-dimensional match value parameter that governs the optimal order of offers. I also illustrate a source of potential bias when estimating driver preferences using a data set with repeated offers, and construct a consistent, easily-implementable estimator to address the issue. In the third chapter, I consider a choice environment where an econometrician only observes certain covariates for goods that are chosen. This missing data may reflect literal omissions from a dataset or inherently counterfactual outcomes, such as in the Roy (1951) model. When partially observed covariates vary stochastically across consumers there is selection bias in the distribution of observed covariates: consumers are more likely to pick goods with preferential characteristic draws. I show that imputation methods that use the observed distribution of covariates to replace missing data bias discrete choice parameter estimates toward zero, regardless of whether missing data or all data are imputed. Moreover, this bias rapidly increases with the variance of the covariate distribution. Instead, I propose two full-information maximum likelihood estimation procedures that jointly estimate preferences and the underlying distribution of covariates. While these estimators necessarily involve Monte Carlo simulation when covariates are distributed continuously, I show that it is possible to avoid simulation when covariates take a discrete set of values.
Index Term-Uncontrolled  
Bandit games
Index Term-Uncontrolled  
Continuous-time games
Index Term-Uncontrolled  
Dynamic programming
Index Term-Uncontrolled  
Missing data
Index Term-Uncontrolled  
Rideshare
Added Entry-Corporate Name  
Columbia University Economics
Host Item Entry  
Dissertations Abstracts International. 86-06A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657549

MARC

 008250224s2025        us  ||||||||||||||c||eng  d
■001000017165144
■00520250211153129
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346878674
■035    ▼a(MiAaPQ)AAI31767313
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519.3
■1001  ▼aGrimme,  William  James.
■24510▼aEssays  on  Bandit  Games  and  Endogenously  Missing  Data.
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2025
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2025
■300    ▼a162  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  A.
■500    ▼aAdvisor:  Tebaldi,  Pietro.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2025.
■520    ▼aI  characterize  optimal  strategies  and  equilibria  in  two  bandit-type  games  of  strategic  information  acquisition.  The  latter  game  admits  a  missing  data  problem,  which  I  develop  an  estimator  to  address.  I  consider  a  third  environment  with  an  additional  missing  data  problem,  characterize  estimation  bias  both  statistically  and  empirically,  and  develop  a  pair  of  easily  implementable  unbiased  estimators.  In  the  first  chapter,  I  analyze  a  two-player,  two-armed  exponential  bandit  model  in  continuous  time  across  several  monitoring  and  disclosure  environments,  in  which  breakthroughs  are  fully  informative  of  the  state  of  the  world.  In  particular,  I  consider  an  environment  where  player  actions  are  observed  but  the  results  of  experimentation  are  unobserved,  and  an  environment  where  both  actions  and  experimentation  outcomes  are  unobserved.  In  the  former  environment,  I  construct  a  Perfect  Bayesian  Equilibrium  that  induces  the  efficient  (cooperative)  experimentation  path.  This  equilibrium  relies  on  strategies  that  deter  free-riding  by  moving  to  an  undesirable,  asymmetric  experimentation  path  when  the  safe  arm  is  played.  In  the  latter  environment,  I  provide  conditions  on  starting  beliefs  for  which  it  is  possible  to  construct  a  Perfect  Bayesian  Equilibrium  that  induces  the  efficient  experimentation  path.  This  equilibrium  requires  that  players  privately,  separately  experiment  and  share  the  results  of  experimentation  at  a  single  point  in  time.  I  show  how  this  hybrid  Markov  approach  can  be  adapted  to  a  general  discrete-time  setting  and  provide  conditions  for  which  strategies  measurable  with  respect  to  both  the  Markov  partition  and  a  finite  automaton  are  consistent.  In  the  second  chapter,  I  consider  the  problem  of  a  rideshare  company  which  makes  sequences  of  take  it  or  leave  it  offers  to  drivers  for  individual  trips.  When  drivers  are  privately  and  commonly  informed  of  trip  quality,  rejected  offers  are  informative  about  trip  quality  to  the  rideshare  company.  As  such,  the  rideshare  company  faces  a  strategic  information  acquisition  problem:  offers  influence  both  the  current-period  payoff  and  the  expectation  of  future  payoffs  via  posterior  beliefs.  When  unobserved  quality  is  Bernoulli,  the  value  function  increases  in  beliefs  over  quality,  and  I  characterize  the  value  function  and  optimal  offer  sequence  using  dynamic  programming.  Moreover,  I  show  that  a  heuristic  n-offer  look-ahead  sequence  converges  uniformly  to  the  optimal  revenue,  and  characterize  bounds  on  the  revenue  gap.  For  a  general  bounded  distribution  of  unobserved  trip  quality,  I  show  that  the  value  function  is  decreasing  after  rejections,  and  define  analogous  convergent  bounds.  Among  heterogeneous  drivers,  driver  and  platform  value  can  be  collapsed  into  a  single-dimensional  match  value  parameter  that  governs  the  optimal  order  of  offers.  I  also  illustrate  a  source  of  potential  bias  when  estimating  driver  preferences  using  a  data  set  with  repeated  offers,  and  construct  a  consistent,  easily-implementable  estimator  to  address  the  issue.  In  the  third  chapter,  I  consider  a  choice  environment  where  an  econometrician  only  observes  certain  covariates  for  goods  that  are  chosen.  This  missing  data  may  reflect  literal  omissions  from  a  dataset  or  inherently  counterfactual  outcomes,  such  as  in  the  Roy  (1951)  model.  When  partially  observed  covariates  vary  stochastically  across  consumers  there  is  selection  bias  in  the  distribution  of  observed  covariates:  consumers  are  more  likely  to  pick  goods  with  preferential  characteristic  draws.  I  show  that  imputation  methods  that  use  the  observed  distribution  of  covariates  to  replace  missing  data  bias  discrete  choice  parameter  estimates  toward  zero,  regardless  of  whether  missing  data  or  all  data  are  imputed.  Moreover,  this  bias  rapidly  increases  with  the  variance  of  the  covariate  distribution.  Instead,  I  propose  two  full-information  maximum  likelihood  estimation  procedures  that  jointly  estimate  preferences  and  the  underlying  distribution  of  covariates.  While  these  estimators  necessarily  involve  Monte  Carlo  simulation  when  covariates  are  distributed  continuously,  I  show  that  it  is  possible  to  avoid  simulation  when  covariates  take  a  discrete  set  of  values.
■590    ▼aSchool  code:  0054.
■653    ▼aBandit  games
■653    ▼aContinuous-time  games
■653    ▼aDynamic  programming
■653    ▼aMissing  data
■653    ▼aRideshare
■690    ▼a0511
■690    ▼a0501
■71020▼aColumbia  University▼bEconomics.
■7730  ▼tDissertations  Abstracts  International▼g86-06A.
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2025
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17165144▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0033771 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치