본문

서브메뉴

Computational and Experimental Investigation of Microfluidics into Biophysical Interaction.
Computational and Experimental Investigation of Microfluidics into Biophysical Interaction.

상세정보

자료유형  
 학위논문
Control Number  
0017165162
International Standard Book Number  
9798346830252
Dewey Decimal Classification Number  
541.3
Main Entry-Personal Name  
Ma, Hui.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
176 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: B.
General Note  
Advisor: Linnes, Jacqueline C.;Kinzer-Ursem, Tamara L.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약Microfluidic techniques have been widely adopted in biomedical research due to the precise control of fluids, small volume requirement, low cost and etc, and have boosted the development of biomolecular interaction analysis, point-of-care diagnostics, and biosensors.Protein-protein interaction plays a key role in biological, biomedical and pharmaceutical research. The technical development of biosensors, new drugs and vaccines, and disease diagnostics heavily rely on the characterization of protein-protein interaction kinetics. The current gold standard assays for measuring protein-protein interaction are surface plasmon resonance (SPR), and bio-layer interferometry (BLI). These commercial devices are accurate but expensive, however.Here, I have developed new microfluidic techniques and models in protein-protein interaction kinetics measurement, rotational diffusion coefficient modeling, electrochemical impedance spectroscopy-based biosensors, and two-phase porous media flow models. Firstly, I applied particle diffusometry (PD) in the streptavidin-biotin binding kinetics measurement, utilizing a Y-junction microchannel. Secondly, to reduce solution volumes used in an analysis experiment, I designed a low-volume chip and coupled it with PD to measure the binding kinetics of human immunodeficiency virus p24 antibody-antigen interactions. Thirdly, considering the Brownian motion of the non-symmetric particles, I developed a new model to efficiently compute particles' rotational diffusion coefficients. Fourthly, to make economic biosensors to detect multiple biomarkers, I created a new chip, enabling hundreds of tests in a single droplet (∼ 50 μL) on one chip. Finally, to understand the liquid flow in porous media, such as nitrocellulose in lateral flow assays, I built a new two-phase porous media flow model based on the Navier-Stokes equation and compared it with experiments. These techniques and models underwent rigorous experimental and computational validation, demonstrating their effectiveness and performance.
Subject Added Entry-Topical Term  
Reagents.
Subject Added Entry-Topical Term  
Vortices.
Subject Added Entry-Topical Term  
Brownian motion.
Subject Added Entry-Topical Term  
Contact angle.
Subject Added Entry-Topical Term  
Permeability.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Fluid mechanics.
Subject Added Entry-Topical Term  
Mechanical engineering.
Index Term-Uncontrolled  
Microfluidic techniques
Index Term-Uncontrolled  
Surface plasmon resonance
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-06B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657544

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017165162
■00520250211153131
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346830252
■035    ▼a(MiAaPQ)AAI31786080
■035    ▼a(MiAaPQ)Purdue25674117
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a541.3
■1001  ▼aMa,  Hui.
■24510▼aComputational  and  Experimental  Investigation  of  Microfluidics  into  Biophysical  Interaction.
■260    ▼a[S.l.]▼bPurdue  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a176  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  B.
■500    ▼aAdvisor:  Linnes,  Jacqueline  C.;Kinzer-Ursem,  Tamara  L.
■5021  ▼aThesis  (Ph.D.)--Purdue  University,  2024.
■520    ▼aMicrofluidic  techniques  have  been  widely  adopted  in  biomedical  research  due  to  the  precise  control  of  fluids,  small  volume  requirement,  low  cost  and  etc,  and  have  boosted  the  development  of  biomolecular  interaction  analysis,  point-of-care  diagnostics,  and  biosensors.Protein-protein  interaction  plays  a  key  role  in  biological,  biomedical  and  pharmaceutical  research.  The  technical  development  of  biosensors,  new  drugs  and  vaccines,  and  disease  diagnostics  heavily  rely  on  the  characterization  of  protein-protein  interaction  kinetics.  The  current  gold  standard  assays  for  measuring  protein-protein  interaction  are  surface  plasmon  resonance  (SPR),  and  bio-layer  interferometry  (BLI).  These  commercial  devices  are  accurate  but  expensive,  however.Here,  I  have  developed  new  microfluidic  techniques  and  models  in  protein-protein  interaction  kinetics  measurement,  rotational  diffusion  coefficient  modeling,  electrochemical  impedance  spectroscopy-based  biosensors,  and  two-phase  porous  media  flow  models.  Firstly,  I  applied  particle  diffusometry  (PD)  in  the  streptavidin-biotin  binding  kinetics  measurement,  utilizing  a  Y-junction  microchannel.  Secondly,  to  reduce  solution  volumes  used  in  an  analysis  experiment,  I  designed  a  low-volume  chip  and  coupled  it  with  PD  to  measure  the  binding  kinetics  of  human  immunodeficiency  virus  p24  antibody-antigen  interactions.  Thirdly,  considering  the  Brownian  motion  of  the  non-symmetric  particles,  I  developed  a  new  model  to  efficiently  compute  particles'  rotational  diffusion  coefficients.  Fourthly,  to  make  economic  biosensors  to  detect  multiple  biomarkers,  I  created  a  new  chip,  enabling  hundreds  of  tests  in  a  single  droplet  (∼  50  μL)  on  one  chip.  Finally,  to  understand  the  liquid  flow  in  porous  media,  such  as  nitrocellulose  in  lateral  flow  assays,  I  built  a  new  two-phase  porous  media  flow  model  based  on  the  Navier-Stokes  equation  and  compared  it  with  experiments.  These  techniques  and  models  underwent  rigorous  experimental  and  computational  validation,  demonstrating  their  effectiveness  and  performance.
■590    ▼aSchool  code:  0183.
■650  4▼aReagents.
■650  4▼aVortices.
■650  4▼aBrownian  motion.
■650  4▼aContact  angle.
■650  4▼aPermeability.
■650  4▼aGeometry.
■650  4▼aBiomedical  engineering.
■650  4▼aFluid  mechanics.
■650  4▼aMechanical  engineering.
■653    ▼aMicrofluidic  techniques
■653    ▼aSurface  plasmon  resonance
■690    ▼a0541
■690    ▼a0548
■690    ▼a0204
■71020▼aPurdue  University.
■7730  ▼tDissertations  Abstracts  International▼g86-06B.
■790    ▼a0183
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17165162▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0033766 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치