본문

서브메뉴

Interdisciplinary Study of Prenatal Polycyclic Aromatic Hydrocarbon Exposure and Mitochondrial Toxicity.
Interdisciplinary Study of Prenatal Polycyclic Aromatic Hydrocarbon Exposure and Mitochondrial Toxicity.

상세정보

자료유형  
 학위논문
Control Number  
0017164097
International Standard Book Number  
9798384098898
Dewey Decimal Classification Number  
613
Main Entry-Personal Name  
McLarnan, Sarah M.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
231 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Pearson, Brandon L.;Herbstman, Julie B.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2024.
Summary, Etc.  
요약The prenatal period of development is uniquely susceptible to lasting harmful health effects from exposure to environmental toxicants. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants which have a wide variety of associated health effects, including impaired neurodevelopment when exposure occurs in-utero. While a handful of mechanisms have been implicated in PAH neurodevelopmental toxicity, none fully resolve the intricate biological processes that contribute to these outcomes. Mitochondria are increasingly being studied as sensitive targets of many environmental toxicants including PAHs. Despite the known mitochondrial sensitivity to PAHs, and the role of mitochondrial functions in neurodevelopment, little research has been done to evaluate mitochondrial dysfunction as mechanism of PAH neurodevelopmental toxicity.The work of this dissertation seeks to investigate a number of questions on this topic using a wide variety of techniques. We study exposure sources of individual PAHs, the relationship between prenatal PAH exposure constituents and mitochondrial functional outcomes and mitochondrial DNA copy number (mtDNAcn) in multiple biospecimens, including windows of exposure. We employ both epidemiological and experimental techniques, leveraging the advantages of one approach against the weakness of another to draw robust conclusions.Chapter 2 begins by comprehensively studying the demographic and behavioral variables predictive of personal PAH exposure. We combined a significant amount of personal exposure data collected using silicone wristbands with prenatal questionnaires to identify variables most predictive of both exposure to individual PAH compounds and total exposure. This work revealed complex relationships between multiple parameters in the prediction of each individual PAH. We found demographic and socioeconomic variables to be the most common predictors of exposure, followed by behavior variables. This work provides the foundation to identify pathways to reduce exposure and protecting the most vulnerable populations.In chapter 3, we describe two epidemiological studies conducted in Northern Manhattan birth cohorts. The first study uses data from the Columbia Center for Children's Environmental Health (CCCEH) Fair Start cohort. We measured mitochondrial DNA copy number (mtDNAcn) in umbilical cord tissue, a novel biospecimen with unique utility due to its ease of acquisition and homogenous cellular composition. We measured individual exposure to 63 PAH compounds using silicone wristband samplers and analyze this data using both individual models and quantile G computation to estimate the overall mixture effect. We identified three compounds associated with mtDNAcn in individual models, and a positive association between the mixture of 19 compounds and mtDNAcn.In the second study we expanded upon previous analyses in the CCCEH Mothers and Newborns cohort which had demonstrated an association between summed-total prenatal exposure to 8 carcinogenic PAHs and scores on the Bayley Scale of Infant Development-II at age 3. We used measures of mtDNAcn in umbilical cord blood to evaluate the role of mitochondrial toxicity in PAH neurodevelopment and improved upon prior studies by including adjustment for cell type composition. We utilized both traditional linear model approaches as well as quantile G computation to evaluate the mixture both as a sum-total and using newly developed mixture methods. We determined that while prenatal PAH exposure was negatively associated with umbilical cord blood mtDNAcn using mixtures methods mtDNAcn was not associated with neurodevelopment. The bidirectional effect of prenatal PAH exposure on mtDNAcn between these two studies reveals the complexity of mtDNAcn as a biomarker and the need for more direct measures of mitochondrial functions in the study of PAH neurodevelopmental toxicity.Chapter 4 seeks to complement the epidemiological research with an experimental system. Using mouse preimplantation embryos, we measured the effect of exposure to an environmentally relevant mixture of PAHs on morphological development, superoxide production, mitochondria membrane potential, and mtDNAcn. We found exposure to low levels of a PAH mixture from days 2.5-3.5 post fertilization caused a significant decrease in healthy embryo morphology and a reduction in mtDNAcn. PAH exposure increased mitochondrial membrane potential under several dosing regimens while the effect on superoxide levels was variable and potentially mediated by changes in mitochondrial mass. As a whole these results indicate mitochondrial dysfunction as a result of low-level PAH exposure during the earliest periods of development with a window of heightened susceptibility immediately prior to implantation.In chapter 5 we evaluate the relative mitochondrial potency of the 8 commonly studied carcinogenic PAHs and an environmental relevant mixture of those 8 compounds. Using human umbilical cord mesenchymal stem cells, we specifically study these effects in the context of prenatal development. Superoxide production, mitochondrial membrane potential, mitochondrial mass, cell death and mtDNAcn was quantified at 9 doses for each exposure. This data was used to fit dose response curves and determine relative potency of each exposure/outcome endpoint. We identified benzo[k]fluoranthene and chrysene among the most toxic compounds analyzed and noted differences between relative mitochondrial toxicity and carcinogenicity of these constituents emphasizing the need for continued research into the non-cancer endpoints of PAH exposure.With the intentional comparable exposures and outcomes utilized in these studies comes the opportunity to make connections and draw conclusions across chapters to arrive at four major conclusion: (1) Demographic variables, not behavior, are most predictive of exposure to many PAH compounds (2) prenatal PAH exposure affects multiple measures of mitochondrial functions, (3) there is variability in the susceptibility during early development, and (4) the developmental mitochondrial toxicity of previously studied PAH compounds does not follow the same patterns of relative potency seen in carcinogenesis. This work provides significant insight into the impact of prenatal PAH exposure on mitochondrial functions while highlighting critical areas for further research. More studies are needed to fully understand the mechanisms and long-term effects of PAH exposure on early development, as well as to identify effective interventions to mitigate these risks.
Subject Added Entry-Topical Term  
Environmental health.
Subject Added Entry-Topical Term  
Developmental biology.
Subject Added Entry-Topical Term  
Toxicology.
Subject Added Entry-Topical Term  
Neurosciences.
Subject Added Entry-Topical Term  
Health sciences.
Index Term-Uncontrolled  
Mitochondria
Index Term-Uncontrolled  
Neurodevelopment
Index Term-Uncontrolled  
Polycyclic aromatic hydrocarbons
Index Term-Uncontrolled  
Neurodevelopmental toxicity
Index Term-Uncontrolled  
Mitochondrial DNA copy number
Added Entry-Corporate Name  
Columbia University Environmental Health Sciences
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657534

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164097
■00520250211152832
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384098898
■035    ▼a(MiAaPQ)AAI31560563
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a613
■1001  ▼aMcLarnan,  Sarah  M.
■24510▼aInterdisciplinary  Study  of  Prenatal  Polycyclic  Aromatic  Hydrocarbon  Exposure  and  Mitochondrial  Toxicity.
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a231  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Pearson,  Brandon  L.;Herbstman,  Julie  B.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2024.
■520    ▼aThe  prenatal  period  of  development  is  uniquely  susceptible  to  lasting  harmful  health  effects  from  exposure  to  environmental  toxicants.  Polycyclic  aromatic  hydrocarbons  (PAHs)  are  ubiquitous  environmental  pollutants  which  have  a  wide  variety  of  associated  health  effects,  including  impaired  neurodevelopment  when  exposure  occurs  in-utero.  While  a  handful  of  mechanisms  have  been  implicated  in  PAH  neurodevelopmental  toxicity,  none  fully  resolve  the  intricate  biological  processes  that  contribute  to  these  outcomes.  Mitochondria  are  increasingly  being  studied  as  sensitive  targets  of  many  environmental  toxicants  including  PAHs.  Despite  the  known  mitochondrial  sensitivity  to  PAHs,  and  the  role  of  mitochondrial  functions  in  neurodevelopment,  little  research  has  been  done  to  evaluate  mitochondrial  dysfunction  as  mechanism  of  PAH  neurodevelopmental  toxicity.The  work  of  this  dissertation  seeks  to  investigate  a  number  of  questions  on  this  topic  using  a  wide  variety  of  techniques.  We  study  exposure  sources  of  individual  PAHs,  the  relationship  between  prenatal  PAH  exposure  constituents  and  mitochondrial  functional  outcomes  and  mitochondrial  DNA  copy  number  (mtDNAcn)  in  multiple  biospecimens,  including  windows  of  exposure.  We  employ  both  epidemiological  and  experimental  techniques,  leveraging  the  advantages  of  one  approach  against  the  weakness  of  another  to  draw  robust  conclusions.Chapter  2  begins  by  comprehensively  studying  the  demographic  and  behavioral  variables  predictive  of  personal  PAH  exposure.  We  combined  a  significant  amount  of  personal  exposure  data  collected  using  silicone  wristbands  with  prenatal  questionnaires  to  identify  variables  most  predictive  of  both  exposure  to  individual  PAH  compounds  and  total  exposure.  This  work  revealed  complex  relationships  between  multiple  parameters  in  the  prediction  of  each  individual  PAH.  We  found  demographic  and  socioeconomic  variables  to  be  the  most  common  predictors  of  exposure,  followed  by  behavior  variables.  This  work  provides  the  foundation  to  identify  pathways  to  reduce  exposure  and  protecting  the  most  vulnerable  populations.In  chapter  3,  we  describe  two  epidemiological  studies  conducted  in  Northern  Manhattan  birth  cohorts.  The  first  study  uses  data  from  the  Columbia  Center  for  Children's  Environmental  Health  (CCCEH)  Fair  Start  cohort.  We  measured  mitochondrial  DNA  copy  number  (mtDNAcn)  in  umbilical  cord  tissue,  a  novel  biospecimen  with  unique  utility  due  to  its  ease  of  acquisition  and  homogenous  cellular  composition.  We  measured  individual  exposure  to  63  PAH  compounds  using  silicone  wristband  samplers  and  analyze  this  data  using  both  individual  models  and  quantile  G  computation  to  estimate  the  overall  mixture  effect.  We  identified  three  compounds  associated  with  mtDNAcn  in  individual  models,  and  a  positive  association  between  the  mixture  of  19  compounds  and  mtDNAcn.In  the  second  study  we  expanded  upon  previous  analyses  in  the  CCCEH  Mothers  and  Newborns  cohort  which  had  demonstrated  an  association  between  summed-total  prenatal  exposure  to  8  carcinogenic  PAHs  and  scores  on  the  Bayley  Scale  of  Infant  Development-II  at  age  3.  We  used  measures  of  mtDNAcn  in  umbilical  cord  blood  to  evaluate  the  role  of  mitochondrial  toxicity  in  PAH  neurodevelopment  and  improved  upon  prior  studies  by  including  adjustment  for  cell  type  composition.  We  utilized  both  traditional  linear  model  approaches  as  well  as  quantile  G  computation  to  evaluate  the  mixture  both  as  a  sum-total  and  using  newly  developed  mixture  methods.  We  determined  that  while  prenatal  PAH  exposure  was  negatively  associated  with  umbilical  cord  blood  mtDNAcn  using  mixtures  methods  mtDNAcn  was  not  associated  with  neurodevelopment.  The  bidirectional  effect  of  prenatal  PAH  exposure  on  mtDNAcn  between  these  two  studies  reveals  the  complexity  of  mtDNAcn  as  a  biomarker  and  the  need  for  more  direct  measures  of  mitochondrial  functions  in  the  study  of  PAH  neurodevelopmental  toxicity.Chapter  4  seeks  to  complement  the  epidemiological  research  with  an  experimental  system.  Using  mouse  preimplantation  embryos,  we  measured  the  effect  of  exposure  to  an  environmentally  relevant  mixture  of  PAHs  on  morphological  development,  superoxide  production,  mitochondria  membrane  potential,  and  mtDNAcn.  We  found  exposure  to  low  levels  of  a  PAH  mixture  from  days  2.5-3.5  post  fertilization  caused  a  significant  decrease  in  healthy  embryo  morphology  and  a  reduction  in  mtDNAcn.  PAH  exposure  increased  mitochondrial  membrane  potential  under  several  dosing  regimens  while  the  effect  on  superoxide  levels  was  variable  and  potentially  mediated  by  changes  in  mitochondrial  mass.  As  a  whole  these  results  indicate  mitochondrial  dysfunction  as  a  result  of  low-level  PAH  exposure  during  the  earliest  periods  of  development  with  a  window  of  heightened  susceptibility  immediately  prior  to  implantation.In  chapter  5  we  evaluate  the  relative  mitochondrial  potency  of  the  8  commonly  studied  carcinogenic  PAHs  and  an  environmental  relevant  mixture  of  those  8  compounds.  Using  human  umbilical  cord  mesenchymal  stem  cells,  we  specifically  study  these  effects  in  the  context  of  prenatal  development.  Superoxide  production,  mitochondrial  membrane  potential,  mitochondrial  mass,  cell  death  and  mtDNAcn  was  quantified  at  9  doses  for  each  exposure.  This  data  was  used  to  fit  dose  response  curves  and  determine  relative  potency  of  each  exposure/outcome  endpoint.  We  identified  benzo[k]fluoranthene  and  chrysene  among  the  most  toxic  compounds  analyzed  and  noted  differences  between  relative  mitochondrial  toxicity  and  carcinogenicity  of  these  constituents  emphasizing  the  need  for  continued  research  into  the  non-cancer  endpoints  of  PAH  exposure.With  the  intentional  comparable  exposures  and  outcomes  utilized  in  these  studies  comes  the  opportunity  to  make  connections  and  draw  conclusions  across  chapters  to  arrive  at  four  major  conclusion:  (1)  Demographic  variables,  not  behavior,  are  most  predictive  of  exposure  to  many  PAH  compounds  (2)  prenatal  PAH  exposure  affects  multiple  measures  of  mitochondrial  functions,  (3)  there  is  variability  in  the  susceptibility  during  early  development,  and  (4)  the  developmental  mitochondrial  toxicity  of  previously  studied  PAH  compounds  does  not  follow  the  same  patterns  of  relative  potency  seen  in  carcinogenesis.  This  work  provides  significant  insight  into  the  impact  of  prenatal  PAH  exposure  on  mitochondrial  functions  while  highlighting  critical  areas  for  further  research.  More  studies  are  needed  to  fully  understand  the  mechanisms  and  long-term  effects  of  PAH  exposure  on  early  development,  as  well  as  to  identify  effective  interventions  to  mitigate  these  risks.
■590    ▼aSchool  code:  0054.
■650  4▼aEnvironmental  health.
■650  4▼aDevelopmental  biology.
■650  4▼aToxicology.
■650  4▼aNeurosciences.
■650  4▼aHealth  sciences.
■653    ▼aMitochondria
■653    ▼aNeurodevelopment
■653    ▼aPolycyclic  aromatic  hydrocarbons
■653    ▼aNeurodevelopmental  toxicity
■653    ▼aMitochondrial  DNA  copy  number
■690    ▼a0470
■690    ▼a0758
■690    ▼a0383
■690    ▼a0566
■690    ▼a0317
■71020▼aColumbia  University▼bEnvironmental  Health  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164097▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0033752 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치