본문

서브메뉴

Discovery and Purity in Archimedes.
Discovery and Purity in Archimedes.

상세정보

자료유형  
 학위논문
Control Number  
0017164100
International Standard Book Number  
9798346533146
Dewey Decimal Classification Number  
330
Main Entry-Personal Name  
Chen, Xiaoxiao.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
97 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: A.
General Note  
Advisor: Schiefsky, Mark J.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2024.
Summary, Etc.  
요약Philosophers of mathematics wonder about the applicability of mathematics to scientific explanations of the physical world. My inquiry is in the opposite direction: why and how can the study of physical phenomena be helpful to the advancement of mathematics? The value of purity has long driven changes and progress in mathematics. According to the ideal of purity, mathematics should be purged of ideas of an extraneous source, because they do not amount to true explanations and can be misleading. Meanwhile, mathematicians, including those who underscore purity, acknowledge the fruitfulness of borrowing foreign ideas to help with mathematical discovery. This dissertation studies Archimedes' Method, a work that highlights the fruitfulness of geometric discovery through mechanical imaginations. I argue that Archimedes brings out the heuristic potential of mechanics in two ways: one is to develop new methods that incorporate non-rigorous techniques inspired by the study of the physical world into rigorous mathematical demonstrations, the other is to envisage an art of discovery through mechanics, of which his Method provides starting points. In this dissertation I show that a dialogue between Archimedes' vision with regard to discovery and the ideal of mathematical purity can shed light on both the thought of Archimedes and the study of the history of mathematics.
Subject Added Entry-Topical Term  
Classical studies.
Subject Added Entry-Topical Term  
Mathematics education.
Subject Added Entry-Topical Term  
Philosophy.
Index Term-Uncontrolled  
History of mathematics
Index Term-Uncontrolled  
Mathematical discovery
Index Term-Uncontrolled  
Non-rigorous techniques
Added Entry-Corporate Name  
Harvard University Classics
Host Item Entry  
Dissertations Abstracts International. 86-05A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657533

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164100
■00520250211152832
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346533146
■035    ▼a(MiAaPQ)AAI31560579
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a330
■1001  ▼aChen,  Xiaoxiao.▼0(orcid)0009000611668905
■24510▼aDiscovery  and  Purity  in  Archimedes.
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a97  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  A.
■500    ▼aAdvisor:  Schiefsky,  Mark  J.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2024.
■520    ▼aPhilosophers  of  mathematics  wonder  about  the  applicability  of  mathematics  to  scientific  explanations  of  the  physical  world.  My  inquiry  is  in  the  opposite  direction:  why  and  how  can  the  study  of  physical  phenomena  be  helpful  to  the  advancement  of  mathematics?  The  value  of  purity  has  long  driven  changes  and  progress  in  mathematics.  According  to  the  ideal  of  purity,  mathematics  should  be  purged  of  ideas  of  an  extraneous  source,  because  they  do  not  amount  to  true  explanations  and  can  be  misleading.  Meanwhile,  mathematicians,  including  those  who  underscore  purity,  acknowledge  the  fruitfulness  of  borrowing  foreign  ideas  to  help  with  mathematical  discovery.  This  dissertation  studies  Archimedes'  Method,  a  work  that  highlights  the  fruitfulness  of  geometric  discovery  through  mechanical  imaginations.  I  argue  that  Archimedes  brings  out  the  heuristic  potential  of  mechanics  in  two  ways:  one  is  to  develop  new  methods  that  incorporate  non-rigorous  techniques  inspired  by  the  study  of  the  physical  world  into  rigorous  mathematical  demonstrations,  the  other  is  to  envisage  an  art  of  discovery  through  mechanics,  of  which  his  Method  provides  starting  points.  In  this  dissertation  I  show  that  a  dialogue  between  Archimedes'  vision  with  regard  to  discovery  and  the  ideal  of  mathematical  purity  can  shed  light  on  both  the  thought  of  Archimedes  and  the  study  of  the  history  of  mathematics.
■590    ▼aSchool  code:  0084.
■650  4▼aClassical  studies.
■650  4▼aMathematics  education.
■650  4▼aPhilosophy.
■653    ▼aHistory  of  mathematics
■653    ▼aMathematical  discovery
■653    ▼aNon-rigorous  techniques
■690    ▼a0434
■690    ▼a0422
■690    ▼a0280
■71020▼aHarvard  University▼bClassics.
■7730  ▼tDissertations  Abstracts  International▼g86-05A.
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164100▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0033751 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치