본문

서브메뉴

Graph Machine Learning for Hardware Security and Security of Graph Machine Learning: Attacks and Defenses.
Graph Machine Learning for Hardware Security and Security of Graph Machine Learning: Attacks and Defenses.

상세정보

자료유형  
 학위논문
Control Number  
0017164145
International Standard Book Number  
9798384456186
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Dutta Chowdhury, Subhajit.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Southern California., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
188 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Nuzzo, Pierluigi.
Dissertation Note  
Thesis (Ph.D.)--University of Southern California, 2024.
Summary, Etc.  
요약The burgeoning costs of integrated circuit (IC) fabrication have led to widespread globalization of the IC supply chain, exposing IC designs to hardware security threats like intellectual property (IP) theft or piracy, illegal overproduction, and hardware Trojan insertion. These security challenges have triggered research on the exploration of secure design methodologies. However, the security solutions are often incomplete, leaving new channels of sensitive information leakage which must be considered. In this dissertation, we introduce novel analysis methods, attacks, and defenses based on graph learning, and specifically graph neural networks (GNNs), to address some of the information leakage challenges to trustworthy ICs. GNNs are particularly effective in processing circuit netlists, which are inherently graph-structured data. They can leverage the node properties of a circuit netlist and their neighborhood information to successfully perform different tasks. First, we present a state register identification technique with GNNs (ReIGNN) that enables circuit reverse engineering for hardware protection. ReIGNN combines, for the first time, GNNs with structural analysis to identify the state registers and help recover the control logic of a design. We then present a graph learning-driven attack (GLEAN) for analyzing the security guarantees of different logic obfuscation (or locking) methods by assessing the level of information leakage from their structural signatures. Graph learning can also be used to detect topologically and functionally similar logic gates or wires in a design, which in turn can be used to confuse existing machine learning-based attacks on logic obfuscation. In this context, we introduce a graph similarity-based logic locking technique (SimLL) which is the state-of-the-art defense against existing oracle-less learning-based attacks. We also introduce a reconfigurable logic-based locking technique which improves resilience against existing oracle-based attacks. Reconfigurable logic blocks like look-up table (LUT), and switch-boxes reduce the amount of information leaked from their structural signatures making them resilient against machine learning-based attacks too.Finally, security is a major concern for GNN models too. GNN models are highly vulnerable to adversarial attacks, where imperceptible perturbations to the input data can significantly impact their performance. To mitigate this vulnerability, we present a GNN training method that yields models that are sparse and compressed, yet adversarially robust. Overall, this dissertation explores the intersection of graph learning and hardware security highlighting the critical role of graph learning in fortifying hardware security as well as the importance of security considerations in graph learning. 
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Graph neural networks
Index Term-Uncontrolled  
Hardware security
Index Term-Uncontrolled  
Logic locking
Index Term-Uncontrolled  
Reverse engineering
Added Entry-Corporate Name  
University of Southern California Electrical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657518

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164145
■00520250211152837
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384456186
■035    ▼a(MiAaPQ)AAI31561813
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aDutta  Chowdhury,  Subhajit.
■24510▼aGraph  Machine  Learning  for  Hardware  Security  and  Security  of  Graph  Machine  Learning:  Attacks  and  Defenses.
■260    ▼a[S.l.]▼bUniversity  of  Southern  California.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a188  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Nuzzo,  Pierluigi.
■5021  ▼aThesis  (Ph.D.)--University  of  Southern  California,  2024.
■520    ▼aThe  burgeoning  costs  of  integrated  circuit  (IC)  fabrication  have  led  to  widespread  globalization  of  the  IC  supply  chain,  exposing  IC  designs  to  hardware  security  threats  like  intellectual  property  (IP)  theft  or  piracy,  illegal  overproduction,  and  hardware  Trojan  insertion.  These  security  challenges  have  triggered  research  on  the  exploration  of  secure  design  methodologies.  However,  the  security  solutions  are  often  incomplete,  leaving  new  channels  of  sensitive  information  leakage  which  must  be  considered.  In  this  dissertation,  we  introduce  novel  analysis  methods,  attacks,  and  defenses  based  on  graph  learning,  and  specifically  graph  neural  networks  (GNNs),  to  address  some  of  the  information  leakage  challenges  to  trustworthy  ICs.  GNNs  are  particularly  effective  in  processing  circuit  netlists,  which  are  inherently  graph-structured  data.  They  can  leverage  the  node  properties  of  a  circuit  netlist  and  their  neighborhood  information  to  successfully  perform  different  tasks.  First,  we  present  a  state  register  identification  technique  with  GNNs  (ReIGNN)  that  enables  circuit  reverse  engineering  for  hardware  protection.  ReIGNN  combines,  for  the  first  time,  GNNs  with  structural  analysis  to  identify  the  state  registers  and  help  recover  the  control  logic  of  a  design.  We  then  present  a  graph  learning-driven  attack  (GLEAN)  for  analyzing  the  security  guarantees  of  different  logic  obfuscation  (or  locking)  methods  by  assessing  the  level  of  information  leakage  from  their  structural  signatures.  Graph  learning  can  also  be  used  to  detect  topologically  and  functionally  similar  logic  gates  or  wires  in  a  design,  which  in  turn  can  be  used  to  confuse  existing  machine  learning-based  attacks  on  logic  obfuscation.  In  this  context,  we  introduce  a  graph  similarity-based  logic  locking  technique  (SimLL)  which  is  the  state-of-the-art  defense  against  existing  oracle-less  learning-based  attacks.  We  also  introduce  a  reconfigurable  logic-based  locking  technique  which  improves  resilience  against  existing  oracle-based  attacks.  Reconfigurable  logic  blocks  like  look-up  table  (LUT),  and  switch-boxes  reduce  the  amount  of  information  leaked  from  their  structural  signatures  making  them  resilient  against  machine  learning-based  attacks  too.Finally,  security  is  a  major  concern  for  GNN  models  too.  GNN  models  are  highly  vulnerable  to  adversarial  attacks,  where  imperceptible  perturbations  to  the  input  data  can  significantly  impact  their  performance.  To  mitigate  this  vulnerability,  we  present  a  GNN  training  method  that  yields  models  that  are  sparse  and  compressed,  yet  adversarially  robust.  Overall,  this  dissertation  explores  the  intersection  of  graph  learning  and  hardware  security  highlighting  the  critical  role  of  graph  learning  in  fortifying  hardware  security  as  well  as  the  importance  of  security  considerations  in  graph  learning. 
■590    ▼aSchool  code:  0208.
■650  4▼aElectrical  engineering.
■650  4▼aComputer  engineering.
■650  4▼aEngineering.
■650  4▼aInformation  technology.
■653    ▼aMachine  learning
■653    ▼aGraph  neural  networks
■653    ▼aHardware  security
■653    ▼aLogic  locking
■653    ▼aReverse  engineering
■690    ▼a0544
■690    ▼a0800
■690    ▼a0464
■690    ▼a0489
■690    ▼a0537
■71020▼aUniversity  of  Southern  California▼bElectrical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0208
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164145▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0033736 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치