본문

서브메뉴

Evaluating the Private and External Costs and Benefits of Select Large-Scale Li-Ion Battery Energy Storage Applications.
Evaluating the Private and External Costs and Benefits of Select Large-Scale Li-Ion Battery Energy Storage Applications.

상세정보

자료유형  
 학위논문
Control Number  
0017161772
International Standard Book Number  
9798384452409
Dewey Decimal Classification Number  
338.9
Main Entry-Personal Name  
Porzio, Jason Edward.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
210 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Moura, Scott.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2024.
Summary, Etc.  
요약Lithium-ion (Li-ion) batteries have experienced a massive rise in popularity since their initial commercial introduction in 1991. Their implementation into several economic sectors has been instrumental in achieving large-scale electrification, with the eventual goal of sector-wide decarbonization. However, there has been little consensus on how to report the impacts associated with Li-ion batteries, and the standard of modeling the use-phase of Li-ion technologies often relies on broad assumptions, particularly with the future prices of Li-ion batteries. Additionally, there is little consensus on whether the integration of Li-ion technologies provides net positive impacts in several sectors. My research aims to provide recommendations for life-cycle assessments (LCA) on Li-ion technologies with the intent of helping future studies be more interpretable, representative, and impactful, as well as critically examine the assumptions used to forecast Li-ion prices. I then employ LCA and technoeconomic analysis (TEA) to model the climate, human health, and economic impacts of Li-ion technologies serving in peaker replacement and heavy-duty long-haul freight roles. The results from these studies show that the relative net impact of using Li-ion batteries in these roles can be positive or negative depending on several factors. Greater details of these studies are provided below.Life-cycle Assessment Consideration for Batteries and Battery MaterialsRechargeable batteries are necessary for the decarbonization of the energy systems, but life-cycle environmental impact assessments have not achieved consensus on the environmental impacts of producing these batteries. Nonetheless, life cycle assessment (LCA) is a powerful tool to inform the development of better-performing batteries with reduced environmental burden. This review explores common practices in lithium-ion battery LCAs and makes recommendations for how future studies can be more interpretable, representative, and impactful. First, LCAs should focus analyses of resource depletion on long-term trends toward more energy and resource-intensive material extraction and processing rather than treating known reserves as a fixed quantity being depleted. Second, future studies should account for extraction and processing operations that deviate from industry best-practices and may be responsible for an outsized share of sector-wide impacts, such as artisanal cobalt mining. Third, LCAs should explore at least 2-3 battery manufacturing facility scales to capture size- and throughput-dependent impacts such as dry room conditioning and solvent recovery. Finally, future LCAs must transition away from kg of battery mass as a functional unit and instead make use of kWh of storage capacity and kWh of lifetime energy throughput.Temporal Variations in Learning Rates of Li-ion Technologies: Insights for Price Forecasting and Policy through Segmented Regression AnalysisSince their initial development in 1991, Li-ion cell prices have decreased by over 97%. However, decades of lithium-ion battery cost reductions are often represented by a single learning rate in an experience curve. Learning rates are not inherently constant, however, and changes in learning rates can have dramatic impacts on cost forecasts and subsequent policy and investment decisions. This analysis is the first study to employ segmented regression to describe how learning rates have historically changed for lithium-ion technologies in different periods of time. Additionally, the distinctions between cost and price data are highlighted to emphasize the value of allowing learning rates to vary over time when performing experience curves for lithium-ion batteries. This analysis identifies past changes in the learning rate of lithium-ion cells, modules, and installations: for lithium-ion cells, the learning rate was 4% through 1997, 34% through 2003, and 24.4% onward. This dynamic learning behavior is explained as periods of market development, shakeout, and stabilization respectively. By allowing greater flexibility in the experience curve, a secondary shakeout period emerges from 2013 onward, with a learning rate of 40.9%. While this secondary shakeout has less statistical significance, we find that it aligns well with the growth of Li-ion markets and may emerge as significant as more data becomes available. Modules and installed costs follow a similar trend, with low learning (6-8% for 4-6 years) followed by an acceleration to 31-37%. The importance of capturing these historical variances is highlighted by demonstrating the impact of varying learning rates on forecasted lithium-ion cell prices through scenario analysis. We observe that price forecasts are much more sensitive to the uncertainty in learning rate compared to the uncertainty in technology deployment. Utilizing multiple learning rates from a segmented experience curve can enhance future Li-ion technology price projections, improving both price forecasting and policy development.Private and External Costs and Benefits of Replacing High-Emitting Peaker Plants with BatteriesFalling costs of Li-ion batteries have made them attractive for grid-scale energy storage applications. Energy storage will become increasingly important as intermittent renewable generation and more frequent extreme weather events put stress on the electricity grid. Environmental groups across the United States are advocating for the replacement of the highest-emitting power plants, which run only at times of peak demand, with Li-ion battery systems. We analyze the life-cycle cost, climate, and human health impacts of replacing the 19 highest-emitting peaker plants in California with Li-ion battery energy storage systems (BESS). Our results show that designing Li-ion BESS to replace peaker plants puts them at an economic disadvantage, even if facilities are only sized to meet 95% of the original plants' load events and are free to engage in arbitrage. However, five of 19 potential replacements do achieve a positive net present value after including monetized climate and human health impacts. These BESS cycle far less than typical front-of-the-meter batteries and rely on the frequency regulation market for most of their revenue. All projects offer net air pollution benefits but increase net greenhouse gas emissions due to electricity demand during charging and upstream emissions from battery manufacturing.Private and External Costs and Benefits of Electrifying Heavy-Duty Long-Haul Trucking with Li-ion BatteriesThe electrification of long-haul heavy-duty vehicles (HDVs) is necessary for the decarbonization of the transportation sector in the United States, but there is no clear technological pathway to replace the diesel internal combustion engine enabling this transport mode. Li-ion batteries have emerged as a popular candidate when exploring options to electrify HDVs, largely due to the rapidly growing popularity of Li-ion battery passenger electric vehicles and decreasing Li-ion battery prices. While many studies point to the climate and human health benefits that will arise from replacing diesel HDVs with Li-ion HDVs, other studies claim that technological limitations will make Li-ion HDVs economically inviable for long-haul freight. We use life-cycle assessment and technoeconomic analysis to model the total ownership cost, climate, and human health impacts associated with replacing a diesel Class 8 truck performing long-haul freight with a Li-ion Class 8 truck in the United States. Our results show that when including monetized contributions to global warming potential and human health burden, Li-ion Class 8 trucks in long-haul freight have greater lifetime costs per mile than diesel Class 8 trucks due to the high price and specific energy of Li-ion batteries, as well as high costs associated with the use of charging infrastructure. Additionally, the current use of Li-ion Class 8 trucks results in marginal improvements to social impacts relative to diesel Class 8 trucks under a high renewable energy cost scenario, but worse social impacts under a low renewable cost scenario. However, by 2035, the social impacts of Li-ion Class 8 trucks are substantially less than diesel Class 8 trucks under both renewable energy cost scenarios as more renewable energy is integrated into the electricity grid.
Subject Added Entry-Topical Term  
Sustainability.
Subject Added Entry-Topical Term  
Public health.
Index Term-Uncontrolled  
Learning rates
Index Term-Uncontrolled  
Li-ion battery
Index Term-Uncontrolled  
Life-cycle assessment
Index Term-Uncontrolled  
Peaker plant
Index Term-Uncontrolled  
Technoeconomic analysis
Index Term-Uncontrolled  
Truck electrification
Added Entry-Corporate Name  
University of California, Berkeley Civil and Environmental Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657477

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161772
■00520250211151443
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384452409
■035    ▼a(MiAaPQ)AAI31296251
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a338.9
■1001  ▼aPorzio,  Jason  Edward.
■24510▼aEvaluating  the  Private  and  External  Costs  and  Benefits  of  Select  Large-Scale  Li-Ion  Battery  Energy  Storage  Applications.
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a210  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Moura,  Scott.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2024.
■520    ▼aLithium-ion  (Li-ion)  batteries  have  experienced  a  massive  rise  in  popularity  since  their  initial  commercial  introduction  in  1991.  Their  implementation  into  several  economic  sectors  has  been  instrumental  in  achieving  large-scale  electrification,  with  the  eventual  goal  of  sector-wide  decarbonization.  However,  there  has  been  little  consensus  on  how  to  report  the  impacts  associated  with  Li-ion  batteries,  and  the  standard  of  modeling  the  use-phase  of  Li-ion  technologies  often  relies  on  broad  assumptions,  particularly  with  the  future  prices  of  Li-ion  batteries.  Additionally,  there  is  little  consensus  on  whether  the  integration  of  Li-ion  technologies  provides  net  positive  impacts  in  several  sectors.  My  research  aims  to  provide  recommendations  for  life-cycle  assessments  (LCA)  on  Li-ion  technologies  with  the  intent  of  helping  future  studies  be  more  interpretable,  representative,  and  impactful,  as  well  as  critically  examine  the  assumptions  used  to  forecast  Li-ion  prices.  I  then  employ  LCA  and  technoeconomic  analysis  (TEA)  to  model  the  climate,  human  health,  and  economic  impacts  of  Li-ion  technologies  serving  in  peaker  replacement  and  heavy-duty  long-haul  freight  roles.  The  results  from  these  studies  show  that  the  relative  net  impact  of  using  Li-ion  batteries  in  these  roles  can  be  positive  or  negative  depending  on  several  factors.  Greater  details  of  these  studies  are  provided  below.Life-cycle  Assessment  Consideration  for  Batteries  and  Battery  MaterialsRechargeable  batteries  are  necessary  for  the  decarbonization  of  the  energy  systems,  but  life-cycle  environmental  impact  assessments  have  not  achieved  consensus  on  the  environmental  impacts  of  producing  these  batteries.  Nonetheless,  life  cycle  assessment  (LCA)  is  a  powerful  tool  to  inform  the  development  of  better-performing  batteries  with  reduced  environmental  burden.  This  review  explores  common  practices  in  lithium-ion  battery  LCAs  and  makes  recommendations  for  how  future  studies  can  be  more  interpretable,  representative,  and  impactful.  First,  LCAs  should  focus  analyses  of  resource  depletion  on  long-term  trends  toward  more  energy  and  resource-intensive  material  extraction  and  processing  rather  than  treating  known  reserves  as  a  fixed  quantity  being  depleted.  Second,  future  studies  should  account  for  extraction  and  processing  operations  that  deviate  from  industry  best-practices  and  may  be  responsible  for  an  outsized  share  of  sector-wide  impacts,  such  as  artisanal  cobalt  mining.  Third,  LCAs  should  explore  at  least  2-3  battery  manufacturing  facility  scales  to  capture  size-  and  throughput-dependent  impacts  such  as  dry  room  conditioning  and  solvent  recovery.  Finally,  future  LCAs  must  transition  away  from  kg  of  battery  mass  as  a  functional  unit  and  instead  make  use  of  kWh  of  storage  capacity  and  kWh  of  lifetime  energy  throughput.Temporal  Variations  in  Learning  Rates  of  Li-ion  Technologies:  Insights  for  Price  Forecasting  and  Policy  through  Segmented  Regression  AnalysisSince  their  initial  development  in  1991,  Li-ion  cell  prices  have  decreased  by  over  97%.  However,  decades  of  lithium-ion  battery  cost  reductions  are  often  represented  by  a  single  learning  rate  in  an  experience  curve.  Learning  rates  are  not  inherently  constant,  however,  and  changes  in  learning  rates  can  have  dramatic  impacts  on  cost  forecasts  and  subsequent  policy  and  investment  decisions.  This  analysis  is  the  first  study  to  employ  segmented  regression  to  describe  how  learning  rates  have  historically  changed  for  lithium-ion  technologies  in  different  periods  of  time.  Additionally,  the  distinctions  between  cost  and  price  data  are  highlighted  to  emphasize  the  value  of  allowing  learning  rates  to  vary  over  time  when  performing  experience  curves  for  lithium-ion  batteries.  This  analysis  identifies  past  changes  in  the  learning  rate  of  lithium-ion  cells,  modules,  and  installations:  for  lithium-ion  cells,  the  learning  rate  was  4%  through  1997,  34%  through  2003,  and  24.4%  onward.  This  dynamic  learning  behavior  is  explained  as  periods  of  market  development,  shakeout,  and  stabilization  respectively.  By  allowing  greater  flexibility  in  the  experience  curve,  a  secondary  shakeout  period  emerges  from  2013  onward,  with  a  learning  rate  of  40.9%.  While  this  secondary  shakeout  has  less  statistical  significance,  we  find  that  it  aligns  well  with  the  growth  of  Li-ion  markets  and  may  emerge  as  significant  as  more  data  becomes  available.  Modules  and  installed  costs  follow  a  similar  trend,  with  low  learning  (6-8%  for  4-6  years)  followed  by  an  acceleration  to  31-37%.  The  importance  of  capturing  these  historical  variances  is  highlighted  by  demonstrating  the  impact  of  varying  learning  rates  on  forecasted  lithium-ion  cell  prices  through  scenario  analysis.  We  observe  that  price  forecasts  are  much  more  sensitive  to  the  uncertainty  in  learning  rate  compared  to  the  uncertainty  in  technology  deployment.  Utilizing  multiple  learning  rates  from  a  segmented  experience  curve  can  enhance  future  Li-ion  technology  price  projections,  improving  both  price  forecasting  and  policy  development.Private  and  External  Costs  and  Benefits  of  Replacing  High-Emitting  Peaker  Plants  with  BatteriesFalling  costs  of  Li-ion  batteries  have  made  them  attractive  for  grid-scale  energy  storage  applications.  Energy  storage  will  become  increasingly  important  as  intermittent  renewable  generation  and  more  frequent  extreme  weather  events  put  stress  on  the  electricity  grid.  Environmental  groups  across  the  United  States  are  advocating  for  the  replacement  of  the  highest-emitting  power  plants,  which  run  only  at  times  of  peak  demand,  with  Li-ion  battery  systems.  We  analyze  the  life-cycle  cost,  climate,  and  human  health  impacts  of  replacing  the  19  highest-emitting  peaker  plants  in  California  with  Li-ion  battery  energy  storage  systems  (BESS).  Our  results  show  that  designing  Li-ion  BESS  to  replace  peaker  plants  puts  them  at  an  economic  disadvantage,  even  if  facilities  are  only  sized  to  meet  95%  of  the  original  plants'  load  events  and  are  free  to  engage  in  arbitrage.  However,  five  of  19  potential  replacements  do  achieve  a  positive  net  present  value  after  including  monetized  climate  and  human  health  impacts.  These  BESS  cycle  far  less  than  typical  front-of-the-meter  batteries  and  rely  on  the  frequency  regulation  market  for  most  of  their  revenue.  All  projects  offer  net  air  pollution  benefits  but  increase  net  greenhouse  gas  emissions  due  to  electricity  demand  during  charging  and  upstream  emissions  from  battery  manufacturing.Private  and  External  Costs  and  Benefits  of  Electrifying  Heavy-Duty  Long-Haul  Trucking  with  Li-ion  BatteriesThe  electrification  of  long-haul  heavy-duty  vehicles  (HDVs)  is  necessary  for  the  decarbonization  of  the  transportation  sector  in  the  United  States,  but  there  is  no  clear  technological  pathway  to  replace  the  diesel  internal  combustion  engine  enabling  this  transport  mode.  Li-ion  batteries  have  emerged  as  a  popular  candidate  when  exploring  options  to  electrify  HDVs,  largely  due  to  the  rapidly  growing  popularity  of  Li-ion  battery  passenger  electric  vehicles  and  decreasing  Li-ion  battery  prices.  While  many  studies  point  to  the  climate  and  human  health  benefits  that  will  arise  from  replacing  diesel  HDVs  with  Li-ion  HDVs,  other  studies  claim  that  technological  limitations  will  make  Li-ion  HDVs  economically  inviable  for  long-haul  freight.  We  use  life-cycle  assessment  and  technoeconomic  analysis  to  model  the  total  ownership  cost,  climate,  and  human  health  impacts  associated  with  replacing  a  diesel  Class  8  truck  performing  long-haul  freight  with  a  Li-ion  Class  8  truck  in  the  United  States.  Our  results  show  that  when  including  monetized  contributions  to  global  warming  potential  and  human  health  burden,  Li-ion  Class  8  trucks  in  long-haul  freight  have  greater  lifetime  costs  per  mile  than  diesel  Class  8  trucks  due  to  the  high  price  and  specific  energy  of  Li-ion  batteries,  as  well  as  high  costs  associated  with  the  use  of  charging  infrastructure.  Additionally,  the  current  use  of  Li-ion  Class  8  trucks  results  in  marginal  improvements  to  social  impacts  relative  to  diesel  Class  8  trucks  under  a  high  renewable  energy  cost  scenario,  but  worse  social  impacts  under  a  low  renewable  cost  scenario.  However,  by  2035,  the  social  impacts  of  Li-ion  Class  8  trucks  are  substantially  less  than  diesel  Class  8  trucks  under  both  renewable  energy  cost  scenarios  as  more  renewable  energy  is  integrated  into  the  electricity  grid.
■590    ▼aSchool  code:  0028.
■650  4▼aSustainability.
■650  4▼aPublic  health.
■653    ▼aLearning  rates
■653    ▼aLi-ion  battery
■653    ▼aLife-cycle  assessment
■653    ▼aPeaker  plant
■653    ▼aTechnoeconomic  analysis
■653    ▼aTruck  electrification
■690    ▼a0640
■690    ▼a0438
■690    ▼a0573
■690    ▼a0543
■71020▼aUniversity  of  California,  Berkeley▼bCivil  and  Environmental  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161772▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0033695 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치