본문

서브메뉴

Dynamics of Entanglement With Applications to Quantum Metrology.
Dynamics of Entanglement With Applications to Quantum Metrology.

상세정보

자료유형  
 학위논문
Control Number  
0017161781
International Standard Book Number  
9798382776293
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Block, Maxwell.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
260 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Yao, Norman.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2024.
Summary, Etc.  
요약Coherently controllable quantum devices have grown so large and complex that direct study of their microscopic dynamics is extremely difficult, if not infeasible. Yet, realizing the promise of quantum technologies --- such as simulation, computation and sensing --- requires a deep understanding of the structure and evolution of entanglement in these systems. Achieving this understanding challenges us to develop theoretical methods that provide insight into the dynamics of entanglement without the crutch of detailed microscopic simulations. In this thesis, we demonstrate how the tools of effective field theory and hydrodynamics can be naturally applied to meet this challenge.First, we study monitored random quantum circuits, in which random unitary dynamics are pitted against local projective measurements. The steady-state entanglement entropy of such circuits has been shown to undergo a phase transition from highly-entangled to unentangled as the measurement rate is increased. Here, we focus on the question of how the range of the entangling interactions, parametrized as a power law r−α, affects the universality of this transition. To address this question, we develop a statistical-mechanical model of the entanglement entropy from which we derive an effective field theory governing the phase transition. Comparing to numerical simulations, we find the field theory successfully predicts the key properties of the transition, including the critical power-law exponent below which long-range interactions become relevant. Applying these same conceptual tools to finite-depth circuits, we further predict a phase transition in the teleportation fidelity between distant qubits, given projective measurements on all other qubits. We investigate several examples of this finite-time teleportation transition and demonstrate that our field-theory model accurately captures the underlying physics in each case.Second, we consider quenches of low-temperature symmetry breaking states, such as evolving the x-polarized state under an XY model that manifests easy-plane magnetism. Typically such quenches are analyzed by first taking the thermodynamic limit N → ∞ and then finite-time evolution, which reveals the familiar process of local equilibration. However, a more relevant limit to quantum devices is that both N and t become large together -- that is, one has many particles that interact coherently for a long time. We analyze this limit using a combination of extensive semiclassical numerics and analytical hydrodynamics, with particular focus on the evolution of quantum fluctuations. Remarkably, under very general conditions, we find the quantum fluctuations undergo "squeezing'' -- a pattern of entanglement useful for quantum metrology. These results lead us to the conjecture: any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing. Finally, we provide experimental evidence for this conjecture using a Rydberg atom array which approximately realizes a dipolar XY model.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Thermodynamics.
Subject Added Entry-Topical Term  
Quantum physics.
Index Term-Uncontrolled  
Hydrodynamics
Index Term-Uncontrolled  
Nitrogen vacancy center
Index Term-Uncontrolled  
Quantum metrology
Index Term-Uncontrolled  
Random unitary
Index Term-Uncontrolled  
Rydberg array
Added Entry-Corporate Name  
Harvard University Physics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657475

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161781
■00520250211151444
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382776293
■035    ▼a(MiAaPQ)AAI31296326
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aBlock,  Maxwell.▼0(orcid)0000-0002-6148-581X
■24510▼aDynamics  of  Entanglement  With  Applications  to  Quantum  Metrology.
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a260  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Yao,  Norman.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2024.
■520    ▼aCoherently  controllable  quantum  devices  have  grown  so  large  and  complex  that  direct  study  of  their  microscopic  dynamics  is  extremely  difficult,  if  not  infeasible.  Yet,  realizing  the  promise  of  quantum  technologies  ---  such  as  simulation,  computation  and  sensing  ---  requires  a  deep  understanding  of  the  structure  and  evolution  of  entanglement  in  these  systems.  Achieving  this  understanding  challenges  us  to  develop  theoretical  methods  that  provide  insight  into  the  dynamics  of  entanglement  without  the  crutch  of  detailed  microscopic  simulations.  In  this  thesis,  we  demonstrate  how  the  tools  of  effective  field  theory  and  hydrodynamics  can  be  naturally  applied  to  meet  this  challenge.First,  we  study  monitored  random  quantum  circuits,  in  which  random  unitary  dynamics  are  pitted  against  local  projective  measurements.  The  steady-state  entanglement  entropy  of  such  circuits  has  been  shown  to  undergo  a  phase  transition  from  highly-entangled  to  unentangled  as  the  measurement  rate  is  increased.  Here,  we  focus  on  the  question  of  how  the  range  of  the  entangling  interactions,  parametrized  as  a  power  law  r−α,  affects  the  universality  of  this  transition.  To  address  this  question,  we  develop  a  statistical-mechanical  model  of  the  entanglement  entropy  from  which  we  derive  an  effective  field  theory  governing  the  phase  transition.  Comparing  to  numerical  simulations,  we  find  the  field  theory  successfully  predicts  the  key  properties  of  the  transition,  including  the  critical  power-law  exponent  below  which  long-range  interactions  become  relevant.  Applying  these  same  conceptual  tools  to  finite-depth  circuits,  we  further  predict  a  phase  transition  in  the  teleportation  fidelity  between  distant  qubits,  given  projective  measurements  on  all  other  qubits.  We  investigate  several  examples  of  this  finite-time  teleportation  transition  and  demonstrate  that  our  field-theory  model  accurately  captures  the  underlying  physics  in  each  case.Second,  we  consider  quenches  of  low-temperature  symmetry  breaking  states,  such  as  evolving  the  x-polarized  state  under  an  XY  model  that  manifests  easy-plane  magnetism.  Typically  such  quenches  are  analyzed  by  first  taking  the  thermodynamic  limit  N  →  ∞  and  then  finite-time  evolution,  which  reveals  the  familiar  process  of  local  equilibration.  However,  a  more  relevant  limit  to  quantum  devices  is  that  both  N  and  t  become  large  together  --  that  is,  one  has  many  particles  that  interact  coherently  for  a  long  time.  We  analyze  this  limit  using  a  combination  of  extensive  semiclassical  numerics  and  analytical  hydrodynamics,  with  particular  focus  on  the  evolution  of  quantum  fluctuations.  Remarkably,  under  very  general  conditions,  we  find  the  quantum  fluctuations  undergo  "squeezing''  --  a  pattern  of  entanglement  useful  for  quantum  metrology.  These  results  lead  us  to  the  conjecture:  any  Hamiltonian  exhibiting  finite  temperature,  easy-plane  ferromagnetism  can  be  used  to  generate  scalable  spin  squeezing.  Finally,  we  provide  experimental  evidence  for  this  conjecture  using  a  Rydberg  atom  array  which  approximately  realizes  a  dipolar  XY  model.
■590    ▼aSchool  code:  0084.
■650  4▼aPhysics.
■650  4▼aApplied  mathematics.
■650  4▼aThermodynamics.
■650  4▼aQuantum  physics.
■653    ▼aHydrodynamics
■653    ▼aNitrogen  vacancy  center
■653    ▼aQuantum  metrology
■653    ▼aRandom  unitary
■653    ▼aRydberg  array
■690    ▼a0605
■690    ▼a0599
■690    ▼a0348
■690    ▼a0364
■71020▼aHarvard  University▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161781▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0033693 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치