본문

서브메뉴

Long-term Vision-Based Autonomous Underwater Target Tracking.
Long-term Vision-Based Autonomous Underwater Target Tracking.

상세정보

자료유형  
 학위논문
Control Number  
0017162943
International Standard Book Number  
9798384345046
Dewey Decimal Classification Number  
001
Main Entry-Personal Name  
Zhang, Miao.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
141 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Rock, Stephen.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약This thesis introduces T-STORE (a long-term tracker with dynamic DCF Template STORE(-age) for target recovery), an algorithm designed to enable long-duration vision-based tracking of highly deformable ocean midwater animals using autonomous underwater vehicles.Current midwater tracking practices typically employ stereo blob tracking algorithms to accomplish this task. These systems have proven to be highly effective when the target animal remains within the camera's field-of-view, achieving tracking durations of multiple hours. These systems fail, however, when disruptions occur, such as the target temporarily moving out of view or being occluded by other objects. As a result, they are unsuited for applications requiring tracking durations greater than 24 hours. Addressing the challenge of target re-identification post-disruptions is essential for extending tracking durations.T-STORE presents a solution to the target re-identification problem by fusing the stereo blob tracking system with a visual template-based learning system built on a pool of online-acquired Discriminative Correlation Filer (DCF) templates. Instead of employing an offline-trained Convolutional Neural Network (CNN) detector, T-STORE utilizes an online template-based learning approach to address the scarcity of large-scale data on midwater targets and to enable the tracking of previously unseen targets-of-opportunity.T-STORE is the first to integrate stereo blob tracking with Discriminative Correlation Filters (DCFs). It introduces a novel target re-identification pipeline, leveraging a unique template matching metric and exploiting target information collected during online learning. Additionally, T-STORE introduces a set of lightweight deep features optimized for DCF-based template matching, ensuring adaptability to appearance changes and reducing the required number of templates, which in turn enhances suitability for real-time applications.The performance of T-STORE is demonstrated using field data containing challenging tracking conditions that lead to failures in the stereo blob tracking algorithm. The experiments include a comparison with FuCoLoT (a Fully Correlational Long-Term Tracker), an accepted leader in DCF template-based tracking algorithms. T-STORE outperformed FuCoLoT in both standard tracking metrics and target recovery performance. Specifically, T-STORE exhibited a target recovery success rate exceeding 80%, double that of FuCoLoT, along with an overall F-score of over 0.8, indicating its promising potential for achieving the long duration tracking goal.
Subject Added Entry-Topical Term  
Visualization.
Subject Added Entry-Topical Term  
Decision making.
Subject Added Entry-Topical Term  
Autonomous underwater vehicles.
Subject Added Entry-Topical Term  
Naval engineering.
Subject Added Entry-Topical Term  
Aerospace engineering.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657424

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162943
■00520250211152115
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384345046
■035    ▼a(MiAaPQ)AAI31460282
■035    ▼a(MiAaPQ)Stanfordgw611hn7687
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a001
■1001  ▼aZhang,  Miao.
■24510▼aLong-term  Vision-Based  Autonomous  Underwater  Target  Tracking.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a141  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Rock,  Stephen.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aThis  thesis  introduces  T-STORE  (a  long-term  tracker  with  dynamic  DCF  Template  STORE(-age)  for  target  recovery),  an  algorithm  designed  to  enable  long-duration  vision-based  tracking  of  highly  deformable  ocean  midwater  animals  using  autonomous  underwater  vehicles.Current  midwater  tracking  practices  typically  employ  stereo  blob  tracking  algorithms  to  accomplish  this  task.  These  systems  have  proven  to  be  highly  effective  when  the  target  animal  remains  within  the  camera's  field-of-view,  achieving  tracking  durations  of  multiple  hours.  These  systems  fail,  however,  when  disruptions  occur,  such  as  the  target  temporarily  moving  out  of  view  or  being  occluded  by  other  objects.  As  a  result,  they  are  unsuited  for  applications  requiring  tracking  durations  greater  than  24  hours.  Addressing  the  challenge  of  target  re-identification  post-disruptions  is  essential  for  extending  tracking  durations.T-STORE  presents  a  solution  to  the  target  re-identification  problem  by  fusing  the  stereo  blob  tracking  system  with  a  visual  template-based  learning  system  built  on  a  pool  of  online-acquired  Discriminative  Correlation  Filer  (DCF)  templates.  Instead  of  employing  an  offline-trained  Convolutional  Neural  Network  (CNN)  detector,  T-STORE  utilizes  an  online  template-based  learning  approach  to  address  the  scarcity  of  large-scale  data  on  midwater  targets  and  to  enable  the  tracking  of  previously  unseen  targets-of-opportunity.T-STORE  is  the  first  to  integrate  stereo  blob  tracking  with  Discriminative  Correlation  Filters  (DCFs).  It  introduces  a  novel  target  re-identification  pipeline,  leveraging  a  unique  template  matching  metric  and  exploiting  target  information  collected  during  online  learning.  Additionally,  T-STORE  introduces  a  set  of  lightweight  deep  features  optimized  for  DCF-based  template  matching,  ensuring  adaptability  to  appearance  changes  and  reducing  the  required  number  of  templates,  which  in  turn  enhances  suitability  for  real-time  applications.The  performance  of  T-STORE  is  demonstrated  using  field  data  containing  challenging  tracking  conditions  that  lead  to  failures  in  the  stereo  blob  tracking  algorithm.  The  experiments  include  a  comparison  with  FuCoLoT  (a  Fully  Correlational  Long-Term  Tracker),  an  accepted  leader  in  DCF  template-based  tracking  algorithms.  T-STORE  outperformed  FuCoLoT  in  both  standard  tracking  metrics  and  target  recovery  performance.  Specifically,  T-STORE  exhibited  a  target  recovery  success  rate  exceeding  80%,  double  that  of  FuCoLoT,  along  with  an  overall  F-score  of  over  0.8,  indicating  its  promising  potential  for  achieving  the  long  duration  tracking  goal.
■590    ▼aSchool  code:  0212.
■650  4▼aVisualization.
■650  4▼aDecision  making.
■650  4▼aAutonomous  underwater  vehicles.
■650  4▼aNaval  engineering.
■650  4▼aAerospace  engineering.
■690    ▼a0468
■690    ▼a0538
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162943▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0033642 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치