본문

서브메뉴

Machine Learning in Material Property Prediction.
Machine Learning in Material Property Prediction.

상세정보

자료유형  
 학위논문
Control Number  
0017164200
International Standard Book Number  
9798383701102
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Schultz, Lane E.
Publication, Distribution, etc. (Imprint  
[S.l.] : The University of Wisconsin - Madison., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
231 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Morgan, Dane.
Dissertation Note  
Thesis (Ph.D.)--The University of Wisconsin - Madison, 2024.
Summary, Etc.  
요약This thesis explores the application of machine learning techniques to predict properties of metallic glasses and assesses the applicability domain of machine learning models. The work is primarily based on three papers focusing on predicting glass forming ability through experimental data, molecular dynamics simulations, and other computational methods. A fourth paper proposes a general approach for determining the applicability domain of machine learning models.Chapter 2 introduces computational and machine learning approaches to predict the glass forming ability of metallic alloys. The first study investigates the use of characteristic temperatures to predict critical casting diameters using various machine learning models. The second study employs molecular dynamics to calculate characteristic temperatures for metal alloys, which were then used as features in glass forming ability models. The third study explores the prediction of critical cooling rates using a combination of elemental properties and simulated features. Simulated features utilize machine-learned interatomic potentials. This work demonstrates the potential of combining machine learning with physics-based simulations for accelerating the discovery of metallic glasses.Chapter 3 focuses on developing a general approach for assessing the applicability domain of machine learning models. The proposed method uses kernel density estimation to measure training data density at feature values for inference points. Points from low-density regions have large dissimilarities (i.e., the features come from differing spaces), while those from high-density regions have small dissimilarities. High dissimilarity measures are associated with poor model performance and unreliable uncertainty estimation.In summary, this thesis makes two significant contributions: first, it enhances the understanding and creation of metallic glass forming ability models through computational techniques; second, it addresses the challenge of determining the applicability domains of models. The findings highlight the potential of machine learning in guiding the discovery of new metallic glasses while emphasizing the need for careful consideration of model limitations.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Materials science.
Index Term-Uncontrolled  
Domain
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Metallic glasses
Index Term-Uncontrolled  
Molecular dynamics
Index Term-Uncontrolled  
Metal alloys
Added Entry-Corporate Name  
The University of Wisconsin - Madison Materials Science and Engineering
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657410

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164200
■00520250211152922
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383701102
■035    ▼a(MiAaPQ)AAI31558299
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aSchultz,  Lane  E.
■24510▼aMachine  Learning  in  Material  Property  Prediction.
■260    ▼a[S.l.]▼bThe  University  of  Wisconsin  -  Madison.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a231  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Morgan,  Dane.
■5021  ▼aThesis  (Ph.D.)--The  University  of  Wisconsin  -  Madison,  2024.
■520    ▼aThis  thesis  explores  the  application  of  machine  learning  techniques  to  predict  properties  of  metallic  glasses  and  assesses  the  applicability  domain  of  machine  learning  models.  The  work  is  primarily  based  on  three  papers  focusing  on  predicting  glass  forming  ability  through  experimental  data,  molecular  dynamics  simulations,  and  other  computational  methods.  A  fourth  paper  proposes  a  general  approach  for  determining  the  applicability  domain  of  machine  learning  models.Chapter  2  introduces  computational  and  machine  learning  approaches  to  predict  the  glass  forming  ability  of  metallic  alloys.  The  first  study  investigates  the  use  of  characteristic  temperatures  to  predict  critical  casting  diameters  using  various  machine  learning  models.  The  second  study  employs  molecular  dynamics  to  calculate  characteristic  temperatures  for  metal  alloys,  which  were  then  used  as  features  in  glass  forming  ability  models.  The  third  study  explores  the  prediction  of  critical  cooling  rates  using  a  combination  of  elemental  properties  and  simulated  features.  Simulated  features  utilize  machine-learned  interatomic  potentials.  This  work  demonstrates  the  potential  of  combining  machine  learning  with  physics-based  simulations  for  accelerating  the  discovery  of  metallic  glasses.Chapter  3  focuses  on  developing  a  general  approach  for  assessing  the  applicability  domain  of  machine  learning  models.  The  proposed  method  uses  kernel  density  estimation  to  measure  training  data  density  at  feature  values  for  inference  points.  Points  from  low-density  regions  have  large  dissimilarities  (i.e.,  the  features  come  from  differing  spaces),  while  those  from  high-density  regions  have  small  dissimilarities.  High  dissimilarity  measures  are  associated  with  poor  model  performance  and  unreliable  uncertainty  estimation.In  summary,  this  thesis  makes  two  significant  contributions:  first,  it  enhances  the  understanding  and  creation  of  metallic  glass  forming  ability  models  through  computational  techniques;  second,  it  addresses  the  challenge  of  determining  the  applicability  domains  of  models.  The  findings  highlight  the  potential  of  machine  learning  in  guiding  the  discovery  of  new  metallic  glasses  while  emphasizing  the  need  for  careful  consideration  of  model  limitations.
■590    ▼aSchool  code:  0262.
■650  4▼aComputer  science.
■650  4▼aMaterials  science.
■653    ▼aDomain
■653    ▼aMachine  learning
■653    ▼aMetallic  glasses
■653    ▼aMolecular  dynamics
■653    ▼aMetal  alloys
■690    ▼a0794
■690    ▼a0984
■690    ▼a0800
■71020▼aThe  University  of  Wisconsin  -  Madison▼bMaterials  Science  and  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0262
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164200▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0033628 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치