본문

서브메뉴

Exploring the Role of Chromatin Organization in Non-Genetic Mechanisms of Cancer Treatment Resistance.
Exploring the Role of Chromatin Organization in Non-Genetic Mechanisms of Cancer Treatment Resistance.

상세정보

자료유형  
 학위논문
Control Number  
0017164245
International Standard Book Number  
9798346857563
Dewey Decimal Classification Number  
610
Main Entry-Personal Name  
Frederick, Jane.
Publication, Distribution, etc. (Imprint  
[S.l.] : Northwestern University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
263 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: B.
General Note  
Advisor: Backman, Vadim.
Dissertation Note  
Thesis (Ph.D.)--Northwestern University, 2024.
Summary, Etc.  
요약Cancer cells can rapidly adapt and develop resistance to chemotherapy through non-genetic mechanisms involving changes in gene expression programs, in addition to genetic mutations over many generations. One proposed driver of this rapid transcriptional adaptation is alterations in the 3D organization and dynamics of chromatin - the complex that packages and regulates accessibility to the genome inside the nucleus. Chromatin, a dynamic assembly of DNA and associated proteins, behaves as a complex heteropolymer with intricate physical interactions within the nuclear environment. Therefore, beyond the direct influence of epigenetic modifiers on chromatin architecture, factors such as chromatin self-interactions and interactions with nuclear components, including ions, can profoundly impact gene accessibility and transcriptional activity. Adopting a polymer physics perspective facilitates a comprehensive understanding of how chromatin structure and its interactions dictate functional outcomes, such as transcriptional activity and cellular phenotype. Specific chromatin conformations may promote high transcriptional plasticity and activation of pro-survival pathways in response to cytotoxic stress, while other structures restrict this adaptive response resulting in cell death. However, the quantitative rules linking observable multi-scale chromatin structural changes to large-scale transcriptional reprogramming and phenotypic survival decisions remain poorly understood.This dissertation explores the fundamental role of chromatin architecture in dictating transcriptional adaptation to chemotherapy and chemoresistance in cancer. The central hypothesis is that preexisting chromatin conformations permissive to plasticity predispose cells to surviving treatment by enabling rapid transcriptional reprogramming, while restrictive chromatin structures increase cell death by limiting this adaptive response. An integrated experimental and computational approach is employed, including live-cell imaging to map 3D chromatin organization, polymer physics modeling to predict transcriptional plasticity, multi-omics molecular profiling, and pharmacological modulation of chromatin states. Chapter 1 firstly elucidates fundamental aspects of chromatin structure. Developments advanced imaging and quantification techniques to study chromatin architecture with minimal perturbation are described in Chapter 2. Subsequently, in Chapter 3, a computational model is proposed to delineate the mechanistic link between chromatin structure and phenotype, particularly cellular fate decisions driven by transcriptional programs. Furthermore, employing an ovarian cancer model in Chapter 4, this research demonstrates the potential of modulating chromatin organization to constrain phenotypic heterogeneity within cancer stem cell populations, thereby inhibiting the formation of new spheroids and potentially attenuating tumor progression. Chapter 5 concludes with a summary of the work completed in the dissertation and the potential future directions of this project.The findings elucidate key structural determinants of chromatin plasticity across multiple cancer types and their impact on cell survival during cytotoxic stress. Novel chromatin dynamics signatures are identified that predict treatment outcome and chemoresistance. Targeting these chromatin conformations with epigenetic drugs is demonstrated as a strategy to restrict non-genetic adaptation and resensitize resistant cells to therapy. Collectively, this work uncovers fundamental biological principles governing the epigenetic regulation of transcriptional plasticity and adaptation in cancer. These insights have significant implications for developing new therapeutic approaches to overcome treatment resistance by modulating chromatin structure and dynamics.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Biophysics.
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Genetics.
Index Term-Uncontrolled  
Cancer cells
Index Term-Uncontrolled  
Chemotherapy
Index Term-Uncontrolled  
Chromatin
Index Term-Uncontrolled  
Plasticity
Index Term-Uncontrolled  
Treatment resistance
Added Entry-Corporate Name  
Northwestern University Biomedical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-06B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657395

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164245
■00520250211152938
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346857563
■035    ▼a(MiAaPQ)AAI31564324
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610
■1001  ▼aFrederick,  Jane.▼0(orcid)0000-0003-3007-9197
■24510▼aExploring  the  Role  of  Chromatin  Organization  in  Non-Genetic  Mechanisms  of  Cancer  Treatment  Resistance.
■260    ▼a[S.l.]▼bNorthwestern  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a263  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  B.
■500    ▼aAdvisor:  Backman,  Vadim.
■5021  ▼aThesis  (Ph.D.)--Northwestern  University,  2024.
■520    ▼aCancer  cells  can  rapidly  adapt  and  develop  resistance  to  chemotherapy  through  non-genetic  mechanisms  involving  changes  in  gene  expression  programs,  in  addition  to  genetic  mutations  over  many  generations.  One  proposed  driver  of  this  rapid  transcriptional  adaptation  is  alterations  in  the  3D  organization  and  dynamics  of  chromatin  -  the  complex  that  packages  and  regulates  accessibility  to  the  genome  inside  the  nucleus.  Chromatin,  a  dynamic  assembly  of  DNA  and  associated  proteins,  behaves  as  a  complex  heteropolymer  with  intricate  physical  interactions  within  the  nuclear  environment.  Therefore,  beyond  the  direct  influence  of  epigenetic  modifiers  on  chromatin  architecture,  factors  such  as  chromatin  self-interactions  and  interactions  with  nuclear  components,  including  ions,  can  profoundly  impact  gene  accessibility  and  transcriptional  activity.  Adopting  a  polymer  physics  perspective  facilitates  a  comprehensive  understanding  of  how  chromatin  structure  and  its  interactions  dictate  functional  outcomes,  such  as  transcriptional  activity  and  cellular  phenotype.  Specific  chromatin  conformations  may  promote  high  transcriptional  plasticity  and  activation  of  pro-survival  pathways  in  response  to  cytotoxic  stress,  while  other  structures  restrict  this  adaptive  response  resulting  in  cell  death.  However,  the  quantitative  rules  linking  observable  multi-scale  chromatin  structural  changes  to  large-scale  transcriptional  reprogramming  and  phenotypic  survival  decisions  remain  poorly  understood.This  dissertation  explores  the  fundamental  role  of  chromatin  architecture  in  dictating  transcriptional  adaptation  to  chemotherapy  and  chemoresistance  in  cancer.  The  central  hypothesis  is  that  preexisting  chromatin  conformations  permissive  to  plasticity  predispose  cells  to  surviving  treatment  by  enabling  rapid  transcriptional  reprogramming,  while  restrictive  chromatin  structures  increase  cell  death  by  limiting  this  adaptive  response.  An  integrated  experimental  and  computational  approach  is  employed,  including  live-cell  imaging  to  map  3D  chromatin  organization,  polymer  physics  modeling  to  predict  transcriptional  plasticity,  multi-omics  molecular  profiling,  and  pharmacological  modulation  of  chromatin  states.  Chapter  1  firstly  elucidates  fundamental  aspects  of  chromatin  structure.  Developments  advanced  imaging  and  quantification  techniques  to  study  chromatin  architecture  with  minimal  perturbation  are  described  in  Chapter  2.  Subsequently,  in  Chapter  3,  a  computational  model  is  proposed  to  delineate  the  mechanistic  link  between  chromatin  structure  and  phenotype,  particularly  cellular  fate  decisions  driven  by  transcriptional  programs.  Furthermore,  employing  an  ovarian  cancer  model  in  Chapter  4,  this  research  demonstrates  the  potential  of  modulating  chromatin  organization  to  constrain  phenotypic  heterogeneity  within  cancer  stem  cell  populations,  thereby  inhibiting  the  formation  of  new  spheroids  and  potentially  attenuating  tumor  progression.  Chapter  5  concludes  with  a  summary  of  the  work  completed  in  the  dissertation  and  the  potential  future  directions  of  this  project.The  findings  elucidate  key  structural  determinants  of  chromatin  plasticity  across  multiple  cancer  types  and  their  impact  on  cell  survival  during  cytotoxic  stress.  Novel  chromatin  dynamics  signatures  are  identified  that  predict  treatment  outcome  and  chemoresistance.  Targeting  these  chromatin  conformations  with  epigenetic  drugs  is  demonstrated  as  a  strategy  to  restrict  non-genetic  adaptation  and  resensitize  resistant  cells  to  therapy.  Collectively,  this  work  uncovers  fundamental  biological  principles  governing  the  epigenetic  regulation  of  transcriptional  plasticity  and  adaptation  in  cancer.  These  insights  have  significant  implications  for  developing  new  therapeutic  approaches  to  overcome  treatment  resistance  by  modulating  chromatin  structure  and  dynamics.
■590    ▼aSchool  code:  0163.
■650  4▼aBiomedical  engineering.
■650  4▼aBiophysics.
■650  4▼aCellular  biology.
■650  4▼aMedical  imaging.
■650  4▼aGenetics.
■653    ▼aCancer  cells
■653    ▼aChemotherapy
■653    ▼aChromatin
■653    ▼aPlasticity
■653    ▼aTreatment  resistance
■690    ▼a0541
■690    ▼a0786
■690    ▼a0379
■690    ▼a0574
■690    ▼a0369
■71020▼aNorthwestern  University▼bBiomedical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-06B.
■790    ▼a0163
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164245▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0033613 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치