본문

서브메뉴

Regulation of Hepatic Mitochondrial Oxidation and Gluconeogenesis.
Regulation of Hepatic Mitochondrial Oxidation and Gluconeogenesis.

상세정보

자료유형  
 학위논문
Control Number  
0017160391
International Standard Book Number  
9798383566619
Dewey Decimal Classification Number  
612
Main Entry-Personal Name  
LaMoia, Traci Ellen.
Publication, Distribution, etc. (Imprint  
[S.l.] : Yale University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
87 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
General Note  
Advisor: Shulman, Gerald I.
Dissertation Note  
Thesis (Ph.D.)--Yale University, 2024.
Summary, Etc.  
요약Type 2 diabetes (T2D) is one of the most common metabolic disorders worldwide and is characterized by defective insulin secretion, peripheral insulin resistance, and dysregulated whole-body glucose homeostasis. In Chapter 1 I review the etiology of T2D and describe the well-established link between T2D and metabolic dysfunction associated steatotic liver disease (MASLD). I also describe several pharmaceutical interventions for the treatment of T2D, including metformin, the first-line treatment for T2D, and glucagon-like peptide-1 receptor (GLP-1R)/glucagon receptor (gcgR) dual agonists, a class of recently developed and highly effective treatments for T2D. This sets up the major goal of the work presented in this dissertation, which is to build upon our understanding of the mechanism(s) regulating hepatic mitochondrial oxidation and gluconeogenesis, and to use these insights to inform the development of novel treatments for T2D. The first-line treatment for T2D is metformin, which exerts its glucose-lowering therapeutic effect primarily through inhibition of hepatic gluconeogenesis. Yet the precise mechanism by which metformin inhibits hepatic gluconeogenesis remains unclear. In Chapter 2 I show that the leading proposed mechanism of metformin action, complex I inhibition, is inconsistent with metformin's effect to reduce hepatic gluconeogenesis in a substrate selective manner. I go on to propose a novel mechanism of metformin action in which metformin interacts with complex IV to reduce its enzymatic activity, leading to indirect inhibition of glycerol-3-phosphate (GPD2), increased cytosolic redox, and reduced glycerol-derived gluconeogenesis. In Chapter 3 I investigate the role of intracellular calcium in modulating hepatic gluconeogenesis and mitochondrial oxidation. The emergence of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (gcgR) agonists as strikingly effective treatments for T2D and its comorbidities has renewed interest in understanding the mechanism(s) of hepatic glucagon action. Glucagon induced ER calcium release promotes CAMKII and ATGL phosphorylation, leading to the classical effect of glucagon to increase hepatic gluconeogenesis as well as increase mitochondrial oxidation and intrahepatic lipolysis. This increase in mitochondrial oxidation has been primarily attributed to mitochondrial calcium influx via the mitochondrial calcium uniporter (MCU), due to previous reports showing that mitochondrial calcium activates several mitochondrial dehydrogenases and increases oxidative activity. However, a role for MCU in mediating hepatic mitochondrial oxidation in vivo has not been thoroughly investigated. Here I investigate the role of cytosolic and mitochondrial calcium alterations in mediating hepatic intrahepatic lipolysis, gluconeogenesis, and mitochondrial oxidation. Using a liver-specific MCU KO mouse model, I show that deletion of hepatic MCU leads to paradoxically increased rates of mitochondrial oxidation as well as intrahepatic lipolysis and fatty acid oxidation (FAO). Taken together, I demonstrate that mitochondrial oxidative rates can be dissociated from mitochondrial calcium influx, and I establish a link between CAMKII activity, pyruvate anaplerosis, and mitochondrial oxidation such that cytosolic calcium potently modulates mitochondrial activity.
Subject Added Entry-Topical Term  
Physiology.
Subject Added Entry-Topical Term  
Pharmacology.
Index Term-Uncontrolled  
Calcium
Index Term-Uncontrolled  
Gluconeogenesis
Index Term-Uncontrolled  
Metformin
Index Term-Uncontrolled  
Mitochondrial Oxidation
Index Term-Uncontrolled  
Type 2 Diabetes
Added Entry-Corporate Name  
Yale University Cellular and Molecular Physiology
Host Item Entry  
Dissertations Abstracts International. 86-01B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657386

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160391
■00520250211151010
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383566619
■035    ▼a(MiAaPQ)AAI30995356
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a612
■1001  ▼aLaMoia,  Traci  Ellen.
■24510▼aRegulation  of  Hepatic  Mitochondrial  Oxidation  and  Gluconeogenesis.
■260    ▼a[S.l.]▼bYale  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a87  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-01,  Section:  B.
■500    ▼aAdvisor:  Shulman,  Gerald  I.
■5021  ▼aThesis  (Ph.D.)--Yale  University,  2024.
■520    ▼aType  2  diabetes  (T2D)  is  one  of  the  most  common  metabolic  disorders  worldwide  and  is  characterized  by  defective  insulin  secretion,  peripheral  insulin  resistance,  and  dysregulated  whole-body  glucose  homeostasis.  In  Chapter  1  I  review  the  etiology  of  T2D  and  describe  the  well-established  link  between  T2D  and  metabolic  dysfunction  associated  steatotic  liver  disease  (MASLD).  I  also  describe  several  pharmaceutical  interventions  for  the  treatment  of  T2D,  including  metformin,  the  first-line  treatment  for  T2D,  and  glucagon-like  peptide-1  receptor  (GLP-1R)/glucagon  receptor  (gcgR)  dual  agonists,  a  class  of  recently  developed  and  highly  effective  treatments  for  T2D.  This  sets  up  the  major  goal  of  the  work  presented  in  this  dissertation,  which  is  to  build  upon  our  understanding  of  the  mechanism(s)  regulating  hepatic  mitochondrial  oxidation  and  gluconeogenesis,  and  to  use  these  insights  to  inform  the  development  of  novel  treatments  for  T2D.  The  first-line  treatment  for  T2D  is  metformin,  which  exerts  its  glucose-lowering  therapeutic  effect  primarily  through  inhibition  of  hepatic  gluconeogenesis.  Yet  the  precise  mechanism  by  which  metformin  inhibits  hepatic  gluconeogenesis  remains  unclear.  In  Chapter  2  I  show  that  the  leading  proposed  mechanism  of  metformin  action,  complex  I  inhibition,  is  inconsistent  with  metformin's  effect  to  reduce  hepatic  gluconeogenesis  in  a  substrate  selective  manner.  I  go  on  to  propose  a  novel  mechanism  of  metformin  action  in  which  metformin  interacts  with  complex  IV  to  reduce  its  enzymatic  activity,  leading  to  indirect  inhibition  of  glycerol-3-phosphate  (GPD2),  increased  cytosolic  redox,  and  reduced  glycerol-derived  gluconeogenesis.  In  Chapter  3  I  investigate  the  role  of  intracellular  calcium  in  modulating  hepatic  gluconeogenesis  and  mitochondrial  oxidation.  The  emergence  of  glucagon-like  peptide-1  receptor  (GLP-1R)  and  glucagon  receptor  (gcgR)  agonists  as  strikingly  effective  treatments  for  T2D  and  its  comorbidities  has  renewed  interest  in  understanding  the  mechanism(s)  of  hepatic  glucagon  action.  Glucagon  induced  ER  calcium  release  promotes  CAMKII  and  ATGL  phosphorylation,  leading  to  the  classical  effect  of  glucagon  to  increase  hepatic  gluconeogenesis  as  well  as  increase  mitochondrial  oxidation  and  intrahepatic  lipolysis.  This  increase  in  mitochondrial  oxidation  has  been  primarily  attributed  to  mitochondrial  calcium  influx  via  the  mitochondrial  calcium  uniporter  (MCU),  due  to  previous  reports  showing  that  mitochondrial  calcium  activates  several  mitochondrial  dehydrogenases  and  increases  oxidative  activity.  However,  a  role  for  MCU  in  mediating  hepatic  mitochondrial  oxidation  in  vivo  has  not  been  thoroughly  investigated.  Here  I  investigate  the  role  of  cytosolic  and  mitochondrial  calcium  alterations  in  mediating  hepatic  intrahepatic  lipolysis,  gluconeogenesis,  and  mitochondrial  oxidation.  Using  a  liver-specific  MCU  KO  mouse  model,  I  show  that  deletion  of  hepatic  MCU  leads  to  paradoxically  increased  rates  of  mitochondrial  oxidation  as  well  as  intrahepatic  lipolysis  and  fatty  acid  oxidation  (FAO).  Taken  together,  I  demonstrate  that  mitochondrial  oxidative  rates  can  be  dissociated  from  mitochondrial  calcium  influx,  and  I  establish  a  link  between  CAMKII  activity,  pyruvate  anaplerosis,  and  mitochondrial  oxidation  such  that  cytosolic  calcium  potently  modulates  mitochondrial  activity.
■590    ▼aSchool  code:  0265.
■650  4▼aPhysiology.
■650  4▼aPharmacology.
■653    ▼aCalcium
■653    ▼aGluconeogenesis
■653    ▼aMetformin
■653    ▼aMitochondrial  Oxidation
■653    ▼aType  2  Diabetes
■690    ▼a0719
■690    ▼a0419
■71020▼aYale  University▼bCellular  and  Molecular  Physiology.
■7730  ▼tDissertations  Abstracts  International▼g86-01B.
■790    ▼a0265
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160391▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0033604 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치